Source code for pyrigi.frameworkDB

"""
This is a module for providing common types of frameworks.
"""

from pyrigi.framework import Framework
import pyrigi.graphDB as graphs
import pyrigi.misc as misc

import sympy as sp


[docs] def Cycle(n: int, d: int = 2) -> Framework: """Return d-dimensional framework of the n-cycle.""" misc.check_integrality_and_range(n, "number of vertices n", 3) misc.check_integrality_and_range(d, "dimension d", 1) if n - 1 <= d: return Framework.Simplicial(graphs.Cycle(n), d) elif d == 1: return Framework.Collinear(graphs.Cycle(n), 1) elif d == 2: return Framework.Circular(graphs.Cycle(n)) raise ValueError( "The number of vertices n has to be at most d+1, or d must be 1 or 2 " f"(now (d, n) = ({d}, {n})." )
[docs] def Square() -> Framework: """Framework of the 4-cycle with square realization in the plane""" return Framework(graphs.Cycle(4), {0: [0, 0], 1: [1, 0], 2: [1, 1], 3: [0, 1]})
[docs] def Diamond() -> Framework: """Framework of the diamond with square realization in the plane""" return Framework(graphs.Diamond(), {0: [0, 0], 1: [1, 0], 2: [1, 1], 3: [0, 1]})
[docs] def Complete(n: int, d: int = 2) -> Framework: """ Return d-dimensional framework of the complete graph on n vertices. TODO ---- Describe the generated realization. """ misc.check_integrality_and_range(n, "number of vertices n", 1) misc.check_integrality_and_range(d, "dimension d", 1) if n - 1 <= d: return Framework.Simplicial(graphs.Complete(n), d) elif d == 1: return Framework.Collinear(graphs.Complete(n), 1) elif d == 2: return Framework.Circular(graphs.Complete(n)) raise ValueError( "The number of vertices n has to be at most d+1, or d must be 1 or 2 " f"(now (d, n) = ({d}, {n})." )
[docs] def Path(n: int, d: int = 2) -> Framework: """Return d-dimensional framework of the path graph on n vertices.""" misc.check_integrality_and_range(n, "number of vertices n", 2) misc.check_integrality_and_range(d, "dimension d", 1) if n - 1 <= d: return Framework.Simplicial(graphs.Path(n), d) elif d == 1: return Framework.Collinear(graphs.Path(n), 1) elif d == 2: return Framework.Circular(graphs.Path(n)) raise ValueError( "The number of vertices n has to be at most d+1, or d must be 1 or 2 " f"(now (d, n) = ({d}, {n})." )
[docs] def ThreePrism(realization: str = None) -> Framework: """ Return 3-prism framework. Parameters ---------- realization: If ``"parallel"``, a realization with the three edges that are not in any 3-cycle being parallel is returned. If ``"flexible"``, a continuously flexible realization is returned. Otherwise (default), a general realization is returned. """ if realization == "parallel": return Framework( graphs.ThreePrism(), {0: (0, 0), 1: (2, 0), 2: (1, 2), 3: (0, 6), 4: (2, 6), 5: (1, 4)}, ) if realization == "flexible": return Framework( graphs.ThreePrism(), {0: (0, 0), 1: (2, 0), 2: (1, 2), 3: (0, 4), 4: (2, 4), 5: (1, 6)}, ) return Framework( graphs.ThreePrism(), {0: (0, 0), 1: (3, 0), 2: (2, 1), 3: (0, 4), 4: (2, 4), 5: (1, 3)}, )
[docs] def ThreePrismPlusEdge() -> Framework: """Return a framework of the 3-prism graph with one extra edge.""" G = ThreePrism() G.add_edge([0, 5]) return G
[docs] def CompleteBipartite(m: int, n: int, realization: str = None) -> Framework: """ Return a complete bipartite framework on m+n vertices in the plane. Parameters ---------- realization: If ``"dixonI"``, a realization with one part on the x-axis and the other on the y-axis is returned. Otherwise (default), a "general" realization is returned. Todo ---- Implement realization in higher dimensions. """ misc.check_integrality_and_range(m, "size m", 1) misc.check_integrality_and_range(n, "size n", 1) if realization == "dixonI": return Framework( graphs.CompleteBipartite(m, n), {i: [0, (i + 1) * (-1) ** i] for i in range(m)} | {i: [(i - m + 1) * (-1) ** i, 0] for i in range(m, m + n)}, ) return Framework( graphs.CompleteBipartite(m, n), { i: [ sp.cos(i * sp.pi / max([1, m - 1])), sp.sin(i * sp.pi / max([1, m - 1])), ] for i in range(m) } | { i: [ 1 + 2 * sp.cos((i - m) * sp.pi / max([1, n - 1])), 3 + 2 * sp.sin((i - m) * sp.pi / max([1, n - 1])), ] for i in range(m, m + n) }, )
[docs] def K33plusEdge() -> Framework: """Return a framework of the complete bipartite graph on 3+3 vertices plus an edge.""" G = CompleteBipartite(3, 3, "dixonI") G.add_edge([0, 1]) return G
[docs] def Frustum(n: int) -> Framework: """ Return the n-Frustum with `n` vertices in dimension 2. Definitions ----------- * :prf:ref:`n-Frustum <def-n-frustum>` """ realization = { j: (sp.cos(2 * j * sp.pi / n), sp.sin(2 * j * sp.pi / n)) for j in range(0, n) } realization.update( { (j + n): (2 * sp.cos(2 * j * sp.pi / n), 2 * sp.sin(2 * j * sp.pi / n)) for j in range(0, n) } ) F = Framework(graphs.Frustum(n), realization) return F
[docs] def CnSymmetricFourRegular(n: int = 8) -> Framework: """ Return a C_n-symmetric framework. TODO ---- use in tests Definitions ----------- * :prf:ref:`Example with a free group action <def-Cn-symmetric>` """ if not n % 2 == 0 or n < 8: raise ValueError( "To generate this framework, the cyclical group " + "needs to have an even order of at least 8!" ) return Framework( graphs.CnSymmetricFourRegular(n), { i: [ sp.cos(2 * i * sp.pi / n), sp.sin(2 * i * sp.pi / n), ] for i in range(n) }, )
[docs] def CnSymmetricFourRegularWithFixedVertex(n: int = 8) -> Framework: """ Return a C_n-symmetric framework with a fixed vertex. The cyclical group C_n needs to have even order of at least 8. The returned graph satisfies the expected symmetry-adapted Laman count for rotation but is infinitesimally flexible. TODO ---- use in tests Definitions ----------- * :prf:ref:`Example with joint at origin <def-Cn-symmetric-joint-at-origin>` """ if not n % 2 == 0 or n < 8: raise ValueError( "To generate this framework, the cyclical group " + "needs to have an even order of at least 8!" ) return Framework( graphs.CnSymmetricFourRegularWithFixedVertex(n), { i: [ sp.cos(2 * i * sp.pi / n), sp.sin(2 * i * sp.pi / n), ] for i in range(n) } | { i + n: [ sp.Rational(9, 5) * sp.cos((2 * i) * sp.pi / n) - sp.sin((2 * i) * sp.pi / n), sp.Rational(9, 5) * sp.sin((2 * i) * sp.pi / n) + sp.cos((2 * i) * sp.pi / n), ] for i in range(n) } | {2 * n: (0, 0)}, )