References

[AMYA14]

S. Alireza Motevallian, Changbin Yu, and Brian D.O. Anderson. On the robustness to multiple agent losses in 2d and 3d formations. International Journal of Robust and Nonlinear Control, 25(11):1654–1687, 2014. doi:10.1002/rnc.3167.

[Cap24]

Jose Capco. lnumber: Toolkit for Computing the Laman Number. 2024. URL: https://github.com/jcapco/lnumber, doi:10.5281/zenodo.8301012.

[CGG+18]

Jose Capco, Matteo Gallet, Georg Grasegger, Christoph Koutschan, Niels Lubbes, and Josef Schicho. The number of realizations of a laman graph. SIAM Journal on Applied Algebra and Geometry, 2(1):94–125, 2018. doi:10.1137/17M1118312.

[GGS20]

Matteo Gallet, Georg Grasegger, and Josef Schicho. Counting realizations of laman graphs on the sphere. Electronic Journal of Combinatorics, 27(2):P2.5 (1–18), 2020. doi:10.37236/8548.

[GHT10]

Steven J. Gortler, Alexander D. Healy, and Dylan P. Thurston. Characterizing generic global rigidity. American Journal of Mathematics, 132(4):897–939, 2010. doi:10.1353/ajm.0.0132.

[GGJN22]

Georg Grasegger, Hakan Guler, Bill Jackson, and Anthony Nixon. Flexible circuits in the d-dimensional rigidity matroid. Journal of Graph Theory, 100(2):315–330, 2022. doi:10.1002/jgt.22780.

[GSS93]

Jack Graver, Brigitte Servatius, and Herman Servatius. Combinatorial rigidity. American Mathematical Society, Providence, RI, 1993. doi:10.1090/gsm/002.

[JNS24]

B. Jackson, A. Nixon, and B. Smith. $k$-fold circuits in matroids. preprint, 2024.

[JJ05]

Bill Jackson and Tibor Jordán. Connected rigidity matroids and unique realizations of graphs. Journal of Combinatorial Theory, Series B, 94(1):1–29, 2005. doi:10.1016/j.jctb.2004.11.002.

[Jor16]

Tibor Jordán. Combinatorial Rigidity: Graphs and Matroids in the Theory of Rigid Frameworks, pages 33–112. The Mathematical Society of Japan, 2016. doi:10.2969/msjmemoirs/03401c020.

[Jor21]

Tibor Jordán. Minimum size highly redundantly rigid graphs in the plane. Graphs and Combinatorics, 37(4):1415–1431, 2021. doi:10.1007/s00373-021-02327-4.

[JPR22]

Tibor Jordán, Christopher Poston, and Ryan Roach. Extremal families of redundantly rigid graphs in three dimensions. Discrete Applied Mathematics, 322:448–464, 2022. doi:10.1016/j.dam.2022.03.006.

[KK15]

Viktória E. Kaszanitzky and Csaba Király. On minimally highly vertex-redundantly rigid graphs. Graphs and Combinatorics, 32(1):225–240, 2015. doi:10.1007/s00373-015-1560-3.

[LPS24]

Alison La Porta and Bernd Schulze. Generic infinitesimal rigidity for rotational groups in the plane. 2024. arXiv:2410.07931.

[Lam70]

Gerard Laman. On graphs and rigidity of plane skeletal structures. Journal of Engineering Mathematics, 4:331–340, 1970. doi:10.1007/BF01534980.

[LS08]

Audrey Lee and Ileana Streinu. Pebble game algorithms and sparse graphs. Discrete Mathematics, 308(8):1425–1437, 2008. doi:10.1016/j.disc.2007.07.104.

[Ser89]

Brigitte Servatius. Birigidity in the plane. SIAM Journal on Discrete Mathematics, 2(4):582–589, 1989. doi:10.1137/0402050.

[SYA08]

Tyler H. Summers, Changbin Yu, and Brian D.O. Anderson. Addressing agent loss in vehicle formations and sensor networks. International Journal of Robust and Nonlinear Control, 19(15):1673–1696, 2008. doi:10.1002/rnc.1400.

[Whi96]

Walter Whiteley. Some matroids from discrete applied geometry. In J. Bonin, J. Oxley, and B. Servatius, editors, Matroid theory, volume 197 of Contemporary Mathematics, pages 171–311. AMS, Providence, 1996. doi:10.1090/conm/197.

[PollaczekGeiringer27]

Hilda Pollaczek-Geiringer. Über die Gliederung ebener Fachwerke. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), 7:58–72, 1927. doi:10.1002/zamm.19270070107.