Source code for pyrigi.graph

"""
Module for rigidity related graph properties.
"""

from __future__ import annotations

from copy import deepcopy
from itertools import combinations
from typing import List, Dict, Union, Iterable

import networkx as nx
import matplotlib.pyplot as plt

from sympy import Matrix, oo, zeros
import numpy as np

import math
import distinctipy
from random import randint

from pyrigi.data_type import Vertex, Edge, Point, Inf, Sequence, Coordinate
from pyrigi.misc import doc_category, generate_category_tables
from pyrigi.exception import LoopError
import pyrigi._pebble_digraph

__doctest_requires__ = {("Graph.number_of_realizations",): ["lnumber"]}


[docs] class Graph(nx.Graph): """ Class representing a graph. One option for *incoming_graph_data* is a list of edges. See :class:`networkx.Graph` for the other input formats or use class methods :meth:`~Graph.from_vertices_and_edges` or :meth:`~Graph.from_vertices` when specifying the vertex set is needed. Examples -------- >>> from pyrigi import Graph >>> G = Graph([(0,1), (1,2), (2,3), (0,3)]) >>> print(G) Graph with vertices [0, 1, 2, 3] and edges [[0, 1], [0, 3], [1, 2], [2, 3]] >>> G = Graph() >>> G.add_vertices([0,2,5,7,'a']) >>> G.add_edges([(0,7), (2,5)]) >>> print(G) Graph with vertices [0, 2, 5, 7, 'a'] and edges [[0, 7], [2, 5]] TODO ---- Implement an alias for plotting. Graphical output in Jupyter. Graph names. Describe in the documentation when an output of a randomized algorithm is guaranteed to be correct. Switch from parameter `combinatorial=True/False` to `algorithm='combinatorial'/'randomized'...` METHODS Notes ----- This class inherits the class :class:`networkx.Graph`. Some of the inherited methods are for instance: .. autosummary:: networkx.Graph.add_edge Many of the :doc:`NetworkX <networkx:index>` algorithms are implemented as functions, namely, a :class:`Graph` instance has to be passed as the first parameter. See for instance: .. autosummary:: ~networkx.classes.function.degree ~networkx.classes.function.neighbors ~networkx.classes.function.non_neighbors ~networkx.classes.function.subgraph ~networkx.classes.function.edge_subgraph ~networkx.classes.function.edges ~networkx.algorithms.connectivity.edge_augmentation.is_k_edge_connected ~networkx.algorithms.components.is_connected ~networkx.algorithms.tree.recognition.is_tree The following links give more information on :class:`networkx.Graph` functionality: - :doc:`Graph display <networkx:reference/drawing>` - :doc:`Directed Graphs <networkx:reference/classes/digraph>` - :doc:`Linear Algebra on Graphs <networkx:reference/linalg>` - :doc:`A Database of some Graphs <networkx:reference/generators>` - :doc:`Reading and Writing Graphs <networkx:reference/readwrite/index>` - :doc:`Converting to and from other Data Formats <networkx:reference/convert>` """
[docs] def __str__(self) -> str: """ Return the string representation. """ return ( self.__class__.__name__ + f" with vertices {self.vertex_list()} and edges {self.edge_list()}" )
[docs] def __repr__(self) -> str: """ Return a representation. """ return self.__str__()
[docs] def __eq__(self, other: Graph): """ Return whether the other graph has the same vertices and edges. Examples -------- >>> from pyrigi import Graph >>> G = Graph([[1,2]]) >>> H = Graph([[2,1]]) >>> G == H True Note ---- :func:`~networkx.utils.misc.graphs_equal(self, other)` behaves strangely, hence it is not used. """ if ( self.number_of_edges() != other.number_of_edges() or self.number_of_nodes() != other.number_of_nodes() ): return False for v in self.nodes: if v not in other.nodes: return False for e in self.edges: if not other.has_edge(*e): return False return True
[docs] def __add__(self, other: Graph): r""" Return the union of self and other. Definitions ----------- :prf:ref:`Union of two graphs <def-union-graph>` Examples -------- >>> G = Graph([[0,1],[1,2],[2,0]]) >>> H = Graph([[2,3],[3,4],[4,2]]) >>> G + H Graph with vertices [0, 1, 2, 3, 4] and edges [[0, 1], [0, 2], [1, 2], [2, 3], [2, 4], [3, 4]] """ # noqa: E501 return Graph(nx.compose(self, other))
[docs] @classmethod @doc_category("Class methods") def from_vertices_and_edges( cls, vertices: List[Vertex], edges: List[Edge] ) -> Graph: """ Create a graph from a list of vertices and edges. Parameters ---------- vertices edges Examples -------- >>> Graph.from_vertices_and_edges([0, 1, 2, 3], []) Graph with vertices [0, 1, 2, 3] and edges [] >>> Graph.from_vertices_and_edges([0, 1, 2, 3], [[0, 1], [0, 2], [1, 3]]) Graph with vertices [0, 1, 2, 3] and edges [[0, 1], [0, 2], [1, 3]] >>> Graph.from_vertices_and_edges(['a', 'b', 'c', 'd'], [['a','c'], ['a', 'd']]) Graph with vertices ['a', 'b', 'c', 'd'] and edges [['a', 'c'], ['a', 'd']] """ G = Graph() G.add_nodes_from(vertices) G._check_edge_format_list(edges) G.add_edges(edges) return G
[docs] @classmethod @doc_category("Class methods") def from_vertices(cls, vertices: List[Vertex]) -> Graph: """ Create a graph with no edges from a list of vertices. Examples -------- >>> from pyrigi import Graph >>> G = Graph.from_vertices([3, 1, 7, 2, 12, 3, 0]) >>> G Graph with vertices [0, 1, 2, 3, 7, 12] and edges [] """ return Graph.from_vertices_and_edges(vertices, [])
[docs] @classmethod @doc_category("Class methods") def CompleteOnVertices(cls, vertices: List[Vertex]) -> Graph: """ Generate a complete graph on ``vertices``. Examples -------- >>> Graph.CompleteOnVertices([0, 1, 2, 3, 4]) Graph with vertices [0, 1, 2, 3, 4] and edges [[0, 1], [0, 2], [0, 3], [0, 4], [1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]] >>> Graph.CompleteOnVertices(['a', 'b', 'c', 'd']) Graph with vertices ['a', 'b', 'c', 'd'] and edges [['a', 'b'], ['a', 'c'], ['a', 'd'], ['b', 'c'], ['b', 'd'], ['c', 'd']] """ # noqa: E501 edges = list(combinations(vertices, 2)) return Graph.from_vertices_and_edges(vertices, edges)
def _check_edge_format(self, input_pair: Edge) -> None: """ Check if an input_pair is a pair of distinct vertices of the graph. """ if ( not (isinstance(input_pair, tuple) or isinstance(input_pair, list)) or not len(input_pair) == 2 ): raise TypeError( f"The input {input_pair} must be a tuple or list of length 2." ) if not input_pair[0] in self.nodes or not input_pair[1] in self.nodes: raise ValueError( f"The elements of the pair {input_pair} are not vertices of the graph." ) if input_pair[0] == input_pair[1]: raise LoopError("The input {input_pair} must be two distinct vertices.") def _check_edge(self, edge: Edge, vertices: List[Vertex] = None) -> None: """ Check if the given input is an edge of the graph with endvertices in vertices. Parameters ---------- edge: an edge to be checked vertices: Check if the endvertices of the edge are contained in the list ``vertices``. If None, the function considers all vertices of the graph. """ self._check_edge_format(edge) if vertices and (not edge[0] in vertices or not edge[1] in vertices): raise ValueError( f"The elements of the edge {edge} are not among vertices {vertices}." ) if not self.has_edge(edge[0], edge[1]): raise ValueError(f"Edge {edge} is not contained in the graph.") def _check_edge_list( self, edges: List[Edge], vertices: List[Vertex] = None ) -> None: """ Apply _check_edge to all edges in a list. Parameters ---------- edges: a list of edges to be checked vertices: Check if the endvertices of the edges are contained in the list ``vertices``. If None (default), the function considers all vertices of the graph. """ for edge in edges: self._check_edge(edge, vertices) def _check_edge_format_list(self, pairs: List[Edge]) -> None: """ Apply _check_edge_format to all pairs in a list. Parameters ---------- pairs: a list of pairs to be checked """ for pair in pairs: self._check_edge_format(pair)
[docs] @doc_category("Attribute getters") def vertex_list(self) -> List[Vertex]: """ Return the list of vertices. The output is sorted if possible, otherwise, the internal order is used instead. Examples -------- >>> G = Graph.from_vertices_and_edges([2, 0, 3, 1], [[0, 1], [0, 2], [0, 3]]) >>> G.vertex_list() [0, 1, 2, 3] >>> G = Graph.from_vertices(['c', 'a', 'b']) >>> G.vertex_list() ['a', 'b', 'c'] >>> G = Graph.from_vertices(['b', 1, 'a']) # incomparable vertices >>> G.vertex_list() ['b', 1, 'a'] """ try: return sorted(self.nodes) except BaseException: return list(self.nodes)
[docs] @doc_category("Attribute getters") def edge_list(self) -> List[Edge]: """ Return the list of edges. The output is sorted if possible, otherwise, the internal order is used instead. Examples -------- >>> G = Graph([[0, 3], [3, 1], [0, 1], [2, 0]]) >>> G.edge_list() [[0, 1], [0, 2], [0, 3], [1, 3]] >>> G = Graph.from_vertices(['a', 'c', 'b']) >>> G.edge_list() [] >>> G = Graph([['c', 'b'], ['b', 'a']]) >>> G.edge_list() [['a', 'b'], ['b', 'c']] >>> G = Graph([['c', 1], [2, 'a']]) # incomparable vertices >>> G.edge_list() [('c', 1), (2, 'a')] """ try: return sorted([sorted(e) for e in self.edges]) except BaseException: return list(self.edges)
[docs] @doc_category("Graph manipulation") def delete_vertex(self, vertex: Vertex) -> None: """Alias for :meth:`networkx.Graph.remove_node`.""" self.remove_node(vertex)
[docs] @doc_category("Graph manipulation") def delete_vertices(self, vertices: List[Vertex]) -> None: """Alias for :meth:`networkx.Graph.remove_nodes_from`.""" self.remove_nodes_from(vertices)
[docs] @doc_category("Graph manipulation") def delete_edge(self, edge: Edge) -> None: """Alias for :meth:`networkx.Graph.remove_edge`""" self.remove_edge(*edge)
[docs] @doc_category("Graph manipulation") def delete_edges(self, edges: List[Edge]) -> None: """Alias for :meth:`networkx.Graph.remove_edges_from`.""" self.remove_edges_from(edges)
[docs] @doc_category("Graph manipulation") def add_vertex(self, vertex: Vertex) -> None: """Alias for :meth:`networkx.Graph.add_node`.""" self.add_node(vertex)
[docs] @doc_category("Graph manipulation") def add_vertices(self, vertices: List[Vertex]) -> None: """Alias for :meth:`networkx.Graph.add_nodes_from`.""" self.add_nodes_from(vertices)
[docs] @doc_category("Graph manipulation") def add_edges(self, edges: List[Edge]) -> None: """Alias for :meth:`networkx.Graph.add_edges_from`.""" self.add_edges_from(edges)
[docs] @doc_category("Graph manipulation") def delete_loops(self) -> None: """Removes all the loops from the edges to get a loop free graph.""" self.delete_edges(nx.selfloop_edges(self))
[docs] @doc_category("General graph theoretical properties") def vertex_connectivity(self) -> int: """Alias for :func:`networkx.algorithms.connectivity.connectivity.node_connectivity`.""" # noqa: E501 return nx.node_connectivity(self)
[docs] @doc_category("General graph theoretical properties") def degree_sequence(self, vertex_order: List[Vertex] = None) -> List[int]: """ Return a list of degrees of the vertices of the graph. Parameters ---------- vertex_order: By listing vertices in the preferred order, the degree_sequence can be computed in a way the user expects. If no vertex order is provided, :meth:`~.Graph.vertex_list()` is used. Examples -------- >>> G = Graph([(0,1), (1,2)]) >>> G.degree_sequence() [1, 2, 1] """ if vertex_order is None: vertex_order = self.vertex_list() else: if not set(self.nodes) == set( vertex_order ) or not self.number_of_nodes() == len(vertex_order): raise IndexError( "The vertex_order must contain the same vertices as the graph!" ) return [self.degree(v) for v in vertex_order]
[docs] @doc_category("General graph theoretical properties") def min_degree(self) -> int: """ Return the minimum of the vertex degrees. Examples -------- >>> G = Graph([(0,1), (1,2)]) >>> G.min_degree() 1 """ return min([self.degree(v) for v in self.nodes])
[docs] @doc_category("General graph theoretical properties") def max_degree(self) -> int: """ Return the maximum of the vertex degrees. Examples -------- >>> G = Graph([(0,1), (1,2)]) >>> G.max_degree() 2 """ return max([self.degree(v) for v in self.nodes])
@staticmethod @doc_category("Sparseness") def _pebble_values_are_correct(K: int, L: int) -> bool: r""" Check if K and L satisfy pebble game conditions. K and L need to be integers that satisfy the conditions K > 0, L >= 0 and L < 2K """ if not (isinstance(K, int) and isinstance(L, int)): return False if K <= 0 or L < 0 or L >= 2 * K: return False return True @doc_category("Sparseness") def _build_pebble_digraph(self, K: int, L: int) -> None: r""" Build and save the pebble digraph from scratch. Adds edges one-by-one, as long as it can. Discard edges that are not :prf:ref:`(K, L)-independent <def-kl-sparse-tight>` from the rest of the graph. """ if not self._pebble_values_are_correct(K, L): raise TypeError( "K and L need to be integers that satisfy the conditions of\ K > 0, L >= 0 and L < 2K." ) dir_graph = pyrigi._pebble_digraph.PebbleDiGraph(K, L) dir_graph.add_nodes_from(self.nodes) for edge in self.edges: u, v = edge[0], edge[1] dir_graph.add_edge_maintaining_digraph(u, v) self._pebble_digraph = dir_graph
[docs] @doc_category("Sparseness") def spanning_sparse_subgraph( self, K: int, L: int, use_precomputed_pebble_digraph: bool = False ) -> Graph: r""" Return a maximal :prf:ref:`(K, L)-sparse <def-kl-sparse-tight>` subgraph. Based on the directed graph calculated by the pebble game algorithm, return a maximal :prf:ref:`(K, L)-sparse <def-kl-sparse-tight>` of the graph. There are multiple possible maximal (K, L)-sparse subgraphs, all of which have the same number of edges. Parameters ---------- K: L: use_precomputed_pebble_digraph: If ``True``, the pebble digraph present in the cache is used. If ``False``, recompute the pebble digraph. Use ``True`` only if you are certain that the pebble game digraph is consistent with the graph. """ if ( not use_precomputed_pebble_digraph or K != self._pebble_digraph.K or L != self._pebble_digraph.L ): self._build_pebble_digraph(K, L) return self._pebble_digraph.to_undirected()
@doc_category("Sparseness") def _is_pebble_digraph_sparse( self, K: int, L: int, use_precomputed_pebble_digraph: bool = False ) -> bool: """ Check whether the pebble digraph has the same number of edges as the graph. Parameters ---------- K: L: use_precomputed_pebble_digraph: If ``True``, the pebble digraph present in the cache is used. If ``False``, recompute the pebble digraph. Use ``True`` only if you are certain that the pebble game digraph is consistent with the graph. """ if ( not use_precomputed_pebble_digraph or K != self._pebble_digraph.K or L != self._pebble_digraph.L ): self._build_pebble_digraph(K, L) # all edges are in fact inside the pebble digraph return self.number_of_edges() == self._pebble_digraph.number_of_edges()
[docs] @doc_category("Sparseness") def is_sparse( self, K: int, L: int, algorithm: str = "default", use_precomputed_pebble_digraph: bool = False, ) -> bool: r""" Check whether the graph is :prf:ref:`(K, L)-sparse <def-kl-sparse-tight>`. Parameters ---------- K: L: algorithm: "pebble" or "subgraph". If "pebble", the function uses the pebble game algorithm to check for sparseness. If "subgraph", it uses the subgraph method. If not specified, it defaults to "pebble" whenever possible, otherwise "subgraph". use_precomputed_pebble_digraph: If ``True``, the pebble digraph present in the cache is used. If ``False``, recompute the pebble digraph. Use ``True`` only if you are certain that the pebble game digraph is consistent with the graph. Examples ---- >>> import pyrigi.graphDB as graphs >>> G = graphs.DoubleBanana() >>> G.is_sparse(3,6) True >>> G.add_edge(0,1) >>> G.is_sparse(3,6) False """ if not (isinstance(K, int) and isinstance(L, int)): raise TypeError("K and L need to be integers!") if algorithm == "pebble": if self._pebble_values_are_correct(K, L): return self._is_pebble_digraph_sparse( K, L, use_precomputed_pebble_digraph=use_precomputed_pebble_digraph ) else: raise ValueError( "K and L with pebble algorithm need to satisfy the\ conditions of K > 0, 0 <= L < 2K." ) if algorithm == "subgraph": for j in range(K, self.number_of_nodes() + 1): for vertex_set in combinations(self.nodes, j): G = self.subgraph(vertex_set) if G.number_of_edges() > K * G.number_of_nodes() - L: return False return True if algorithm == "default": if self._pebble_values_are_correct(K, L): # use "pebble" if possible algorithm = "pebble" else: # otherwise use "subgraph" algorithm = "subgraph" return self.is_sparse( K, L, algorithm, use_precomputed_pebble_digraph=use_precomputed_pebble_digraph, ) # reaching this position means that the algorithm is unknown raise ValueError( f"If specified, the value of the algorithm parameter must be one of " f'"pebble", "subgraph", or "default". Instead, it is {algorithm}.' )
[docs] @doc_category("Sparseness") def is_tight( self, K: int, L: int, algorithm: str = "default", use_precomputed_pebble_digraph: bool = False, ) -> bool: r""" Check whether the graph is :prf:ref:`(K, L)-tight <def-kl-sparse-tight>`. Parameters ---------- K: L: algorithm: "pebble" or "subgraph". If "pebble", the function uses the pebble game algorithm to check for sparseness. If "subgraph", it uses the subgraph method. If not specified, it defaults to "pebble". use_precomputed_pebble_digraph: If ``True``, the pebble digraph present in the cache is used. If ``False``, recompute the pebble digraph. Use ``True`` only if you are certain that the pebble game digraph is consistent with the graph. Examples ----´ >>> import pyrigi.graphDB as graphs >>> G = graphs.Complete(4) >>> G.is_tight(2,2) True >>> G1 = graphs.CompleteBipartite(4,4) >>> G1.is_tight(3,6) False """ return ( self.is_sparse( K, L, algorithm, use_precomputed_pebble_digraph=use_precomputed_pebble_digraph, ) and self.number_of_edges() == K * self.number_of_nodes() - L )
[docs] @doc_category("Graph manipulation") def zero_extension( self, vertices: List[Vertex], new_vertex: Vertex = None, dim: int = 2, inplace: bool = False, ) -> Graph: """ Return a :prf:ref:`dim-dimensional 0-extension <def-k-extension>`. Parameters ---------- vertices: A new vertex will be connected to these vertices. All the vertices must be contained in the graph and there must be ``dim`` of them. new_vertex: Newly added vertex will be named according to this parameter. If None, the name will be set as the lowest possible integer value greater or equal than the number of nodes. dim: The dimension in which the k-extension is created. inplace: If True, the graph will be modified, otherwise a new modified graph will be created, while the original graph remains unchanged (default). Examples -------- >>> import pyrigi.graphDB as graphs >>> G = graphs.Complete(3) >>> G Graph with vertices [0, 1, 2] and edges [[0, 1], [0, 2], [1, 2]] >>> G.zero_extension([0, 2]) Graph with vertices [0, 1, 2, 3] and edges [[0, 1], [0, 2], [0, 3], [1, 2], [2, 3]] >>> G.zero_extension([0, 2], 5) Graph with vertices [0, 1, 2, 5] and edges [[0, 1], [0, 2], [0, 5], [1, 2], [2, 5]] >>> G Graph with vertices [0, 1, 2] and edges [[0, 1], [0, 2], [1, 2]] >>> G.zero_extension([0, 1, 2], 5, dim=3, inplace=True); Graph with vertices [0, 1, 2, 5] and edges [[0, 1], [0, 2], [0, 5], [1, 2], [1, 5], [2, 5]] >>> G Graph with vertices [0, 1, 2, 5] and edges [[0, 1], [0, 2], [0, 5], [1, 2], [1, 5], [2, 5]] """ # noqa: E501 return self.k_extension(0, vertices, [], new_vertex, dim, inplace)
[docs] @doc_category("Graph manipulation") def one_extension( self, vertices: List[Vertex], edge: Edge, new_vertex: Vertex = None, dim: int = 2, inplace: bool = False, ) -> Graph: """ Return a :prf:ref:`dim-dimensional 1-extension <def-k-extension>`. Parameters ---------- vertices: A new vertex will be connected to these vertices. All the vertices must be contained in the graph and there must be ``dim + 1`` of them. edge: An edge with endvertices from the list ``vertices`` that will be deleted. The edge must be contained in the graph. new_vertex: Newly added vertex will be named according to this parameter. If None, the name will be set as the lowest possible integer value greater or equal than the number of nodes. dim: The dimension in which the k-extension is created. inplace: If True, the graph will be modified, otherwise a new modified graph will be created, while the original graph remains unchanged (default). Examples -------- >>> import pyrigi.graphDB as graphs >>> G = graphs.Complete(3) >>> G Graph with vertices [0, 1, 2] and edges [[0, 1], [0, 2], [1, 2]] >>> G.one_extension([0, 1, 2], [0, 1]) Graph with vertices [0, 1, 2, 3] and edges [[0, 2], [0, 3], [1, 2], [1, 3], [2, 3]] >>> G Graph with vertices [0, 1, 2] and edges [[0, 1], [0, 2], [1, 2]] >>> G = graphs.ThreePrism() >>> G Graph with vertices [0, 1, 2, 3, 4, 5] and edges [[0, 1], [0, 2], [0, 3], [1, 2], [1, 4], [2, 5], [3, 4], [3, 5], [4, 5]] >>> G.one_extension([0, 1], [0, 1], dim=1) Graph with vertices [0, 1, 2, 3, 4, 5, 6] and edges [[0, 2], [0, 3], [0, 6], [1, 2], [1, 4], [1, 6], [2, 5], [3, 4], [3, 5], [4, 5]] >>> G = graphs.CompleteBipartite(3, 2) >>> G Graph with vertices [0, 1, 2, 3, 4] and edges [[0, 3], [0, 4], [1, 3], [1, 4], [2, 3], [2, 4]] >>> G.one_extension([0, 1, 2, 3, 4], [0, 3], dim=4, inplace = True) Graph with vertices [0, 1, 2, 3, 4, 5] and edges [[0, 4], [0, 5], [1, 3], [1, 4], [1, 5], [2, 3], [2, 4], [2, 5], [3, 5], [4, 5]] >>> G Graph with vertices [0, 1, 2, 3, 4, 5] and edges [[0, 4], [0, 5], [1, 3], [1, 4], [1, 5], [2, 3], [2, 4], [2, 5], [3, 5], [4, 5]] """ # noqa: E501 return self.k_extension(1, vertices, [edge], new_vertex, dim, inplace)
[docs] @doc_category("Graph manipulation") def k_extension( self, k: int, vertices: List[Vertex], edges: List[Edge], new_vertex: Vertex = None, dim: int = 2, inplace: bool = False, ) -> Graph: """ Return a :prf:ref:`dim-dimensional k-extension <def-k-extension>`. Parameters ---------- k vertices: A new vertex will be connected to these vertices. All the vertices must be contained in the graph and there must be ``dim + k`` of them. edges: A list of edges that will be deleted. The endvertices of all the edges must be contained in the list ``vertices``. The edges must be contained in the graph and there must be k of them. new_vertex: Newly added vertex will be named according to this parameter. If None, the name will be set as the lowest possible integer value greater or equal than the number of nodes. dim: The dimension in which the k-extension is created. inplace: If True, the graph will be modified, otherwise a new modified graph will be created, while the original graph remains unchanged (default). Notes ----- See also :meth:`~Graph.zero_extension` and :meth:`~Graph.one_extension`. Examples -------- >>> import pyrigi.graphDB as graphs >>> G = graphs.Complete(5) >>> G Graph with vertices [0, 1, 2, 3, 4] and edges [[0, 1], [0, 2], [0, 3], [0, 4], [1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]] >>> G.k_extension(2, [0, 1, 2, 3], [[0, 1], [0,2]]) Graph with vertices [0, 1, 2, 3, 4, 5] and edges [[0, 3], [0, 4], [0, 5], [1, 2], [1, 3], [1, 4], [1, 5], [2, 3], [2, 4], [2, 5], [3, 4], [3, 5]] >>> G Graph with vertices [0, 1, 2, 3, 4] and edges [[0, 1], [0, 2], [0, 3], [0, 4], [1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]] >>> G = graphs.Complete(5) >>> G Graph with vertices [0, 1, 2, 3, 4] and edges [[0, 1], [0, 2], [0, 3], [0, 4], [1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]] >>> G.k_extension(2, [0, 1, 2, 3, 4], [[0, 1], [0,2]], dim = 3) Graph with vertices [0, 1, 2, 3, 4, 5] and edges [[0, 3], [0, 4], [0, 5], [1, 2], [1, 3], [1, 4], [1, 5], [2, 3], [2, 4], [2, 5], [3, 4], [3, 5], [4, 5]] >>> G = graphs.Path(6) >>> G Graph with vertices [0, 1, 2, 3, 4, 5] and edges [[0, 1], [1, 2], [2, 3], [3, 4], [4, 5]] >>> G.k_extension(2, [0, 1, 2], [[0, 1], [1,2]], dim = 1, inplace = True) Graph with vertices [0, 1, 2, 3, 4, 5, 6] and edges [[0, 6], [1, 6], [2, 3], [2, 6], [3, 4], [4, 5]] >>> G Graph with vertices [0, 1, 2, 3, 4, 5, 6] and edges [[0, 6], [1, 6], [2, 3], [2, 6], [3, 4], [4, 5]] """ # noqa: E501 if not isinstance(dim, int) or dim < 1: raise TypeError( f"The dimension needs to be a positive integer, but is {dim}!" ) for vertex in vertices: if vertex not in self.nodes: raise ValueError(f"Vertex {vertex} is not contained in the graph") if len(set(vertices)) != dim + k: raise ValueError( f"List of vertices must contain {dim + k} distinct vertices" ) self._check_edge_list(edges, vertices) if len(edges) != k: raise ValueError(f"List of edges must contain {k} distinct edges") if new_vertex is None: candidate = self.number_of_nodes() while candidate in self.nodes: candidate += 1 new_vertex = candidate if new_vertex in self.nodes: raise ValueError(f"Vertex {new_vertex} is already a vertex of the graph!") G = self if not inplace: G = deepcopy(self) G.remove_edges_from(edges) for vertex in vertices: G.add_edge(vertex, new_vertex) return G
[docs] @doc_category("Graph manipulation") def all_k_extensions( self, k: int, dim: int = 2, only_non_isomorphic: bool = False, ) -> Iterable[Graph]: """ Return an iterator over all possible :prf:ref:`dim-dimensional k-extensions <def-k-extension>`. Parameters ---------- k dim only_non_isomorphic: If True, only one graph per isomorphism class is included. Examples -------- >>> import pyrigi.graphDB as graphs >>> G = graphs.Complete(3) >>> type(G.all_k_extensions(0)) <class 'generator'> >>> len(list(G.all_k_extensions(0))) 3 >>> len(list(G.all_k_extensions(0, only_non_isomorphic=True))) 1 >>> len(list(graphs.Diamond().all_k_extensions(1, 2, only_non_isomorphic=True))) 2 """ if not isinstance(dim, int) or dim < 1: raise TypeError( f"The dimension needs to be a positive integer, but is {dim}!" ) if self.number_of_nodes() < (dim + k): raise ValueError( f"The number of nodes in the graph needs to be " f"greater or equal than {dim + k}!" ) if self.number_of_edges() < k: raise ValueError( f"The number of edges in the graph needs to be greater or equal than {k}!" ) solutions = [] for edges in combinations(self.edges, k): s = set(self.nodes) w = set() for edge in edges: s.discard(edge[0]) s.discard(edge[1]) w.add(edge[0]) w.add(edge[1]) if len(w) > (dim + k): break w = list(w) for vertices in combinations(s, dim + k - len(w)): current = self.k_extension(k, list(vertices) + w, edges, dim=dim) if only_non_isomorphic: for other in solutions: if current.is_isomorphic(other): break else: solutions.append(current) yield current else: yield current
[docs] @doc_category("Generic rigidity") def extension_sequence( self, dim: int = 2, return_solution: bool = False ) -> Union[List[Graph], bool]: """ Check the existence of a sequence of :prf:ref:`0 and 1-extensions <def-k-extension>`. The method returns whether the graph can be constructed by a sequence of 0 and 1-extensions starting from an edge. Parameters ---------- dim: The dimension in which the extensions are created. Currently implemented only for ``dim==2``. return_solution: If False, a boolean value indicating if the graph can be created by a sequence of extensions is returned. If True, an extension sequence of graphs that creates the graph is returned, or None if no such extension sequence exists. Examples -------- >>> import pyrigi.graphDB as graphs >>> G = graphs.ThreePrism() >>> G Graph with vertices [0, 1, 2, 3, 4, 5] and edges [[0, 1], [0, 2], [0, 3], [1, 2], [1, 4], [2, 5], [3, 4], [3, 5], [4, 5]] >>> G.extension_sequence() True >>> G = graphs.CompleteBipartite(1, 2) >>> G Graph with vertices [0, 1, 2] and edges [[0, 1], [0, 2]] >>> G.extension_sequence() False >>> G = graphs.Complete(3) >>> G Graph with vertices [0, 1, 2] and edges [[0, 1], [0, 2], [1, 2]] >>> G.extension_sequence(return_solution=True) [Graph with vertices [1, 2] and edges [[1, 2]], Graph with vertices [0, 1, 2] and edges [[0, 1], [0, 2], [1, 2]]] >>> G = graphs.Diamond() >>> G Graph with vertices [0, 1, 2, 3] and edges [[0, 1], [0, 2], [0, 3], [1, 2], [2, 3]] >>> G.extension_sequence(return_solution=True) [Graph with vertices [2, 3] and edges [[2, 3]], Graph with vertices [0, 2, 3] and edges [[0, 2], [0, 3], [2, 3]], Graph with vertices [0, 1, 2, 3] and edges [[0, 1], [0, 2], [0, 3], [1, 2], [2, 3]]] """ # noqa: E501 if not isinstance(dim, int) or dim < 1: raise TypeError( f"The dimension needs to be a positive integer, but is {dim}!" ) if not dim == 2: raise NotImplementedError() if not self.number_of_edges() == 2 * self.number_of_nodes() - 3: return None if return_solution else False if self.number_of_nodes() == 2: return [self] if return_solution else True degrees = sorted(self.degree, key=lambda node: node[1]) if degrees[0][1] < 2 or degrees[0][1] > 3: return None if return_solution else False if degrees[0][1] == 2: G = deepcopy(self) G.remove_node(degrees[0][0]) branch = G.extension_sequence(dim, return_solution) if return_solution: if branch is not None: return branch + [self] return None return branch if degrees[0][1] == 3: neighbors = list(self.neighbors(degrees[0][0])) G = deepcopy(self) G.remove_node(degrees[0][0]) for i, j in [[0, 1], [0, 2], [1, 2]]: if not G.has_edge(neighbors[i], neighbors[j]): G.add_edge(neighbors[i], neighbors[j]) branch = G.extension_sequence(dim, return_solution) if return_solution and branch is not None: return branch + [self] elif branch: return True G.remove_edge(neighbors[i], neighbors[j]) return None if return_solution else False
[docs] @doc_category("Generic rigidity") def number_of_realizations( self, spherical_realizations: bool = False, check_min_rigid: bool = True, count_reflection: bool = False, ) -> int: """ Count the number of complex planar or spherical realizations of a minimally 2-rigid graph. Algorithms of :cite:p:`CapcoGalletGraseggerEtAl2018` and :cite:p:`GalletGraseggerSchicho2020` are used. Note, however, that here the result from these algorithms is by default divided by two. This behaviour accounts better for global rigidity, but it can be changed using the parameter ``count_reflection``. Note that by default, the method checks if the input graph is indeed minimally 2-rigid. Caution: Currently the method only works if the python package ``lnumber`` is installed :cite:p:`Capco2024`. See :ref:`installation-guide` for details on installing. Definitions ----------- :prf:ref:`Number of complex realizations<def-number-of-realizations>` :prf:ref:`Number of complex spherical realizations <def-number-of-spherical-realizations>` Parameters ---------- check_min_rigid: If ``True``, ``ValueError`` is raised if the graph is not minimally 2-rigid If ``False``, it is assumed that the user is inputing a minimally rigid graph. spherical_realizations: If ``True``, the number of spherical realizations of the graph is returned. If ``False`` (default), the number of planar realizations is returned. count_reflection: If ``True``, the number of realizations is computed modulo direct isometries. But reflection is counted to be non-congruent as used in :cite:p:`CapcoGalletGraseggerEtAl2018` and :cite:p:`GalletGraseggerSchicho2020`. If ``False`` (default), reflection is not counted. Examples -------- >>> from pyrigi import Graph >>> import pyrigi.graphDB as graphs >>> G = Graph([(0,1),(1,2),(2,0)]) >>> G.number_of_realizations() # number of planar realizations 1 >>> G.number_of_realizations(spherical_realizations=True) 1 >>> G = graphs.ThreePrism() >>> G.number_of_realizations() # number of planar realizations 12 """ try: import lnumber if check_min_rigid and not self.is_min_rigid(): raise ValueError("The graph must be minimally 2-rigid.") if self.number_of_nodes() == 1: return 1 if self.number_of_nodes() == 2 and self.number_of_edges() == 1: return 1 n = self.to_int() if count_reflection: fac = 1 else: fac = 2 if spherical_realizations: return lnumber.lnumbers(n) // fac else: return lnumber.lnumber(n) // fac except ImportError: raise ImportError( "For counting the number of realizations, " "the optional package 'lnumber' is used, " "run `pip install pyrigi[realization-counting]`." )
[docs] @doc_category("Generic rigidity") def is_vertex_redundantly_rigid( self, dim: int = 2, combinatorial: bool = True, prob: float = 0.0001 ) -> bool: """ Check whether the graph is :prf:ref:`vertex redundantly (generically) dim-rigid <def-redundantly-rigid-graph>`. See :meth:`.is_k_vertex_redundantly_rigid` (using k = 1) for details. """ if not isinstance(dim, int) or dim < 1: raise TypeError( f"The dimension needs to be a positive integer, but is {dim}!" ) return self.is_k_vertex_redundantly_rigid(1, dim, combinatorial, prob)
[docs] @doc_category("Generic rigidity") def is_k_vertex_redundantly_rigid( self, k: int, dim: int = 2, combinatorial: bool = True, prob: float = 0.0001 ) -> bool: """ Check whether the graph is :prf:ref:`k-vertex redundantly (generically) dim-rigid <def-redundantly-rigid-graph>`. Preliminary checks from :prf:ref:`thm-k-vertex-redundant-edge-bound-general`, :prf:ref:`thm-k-vertex-redundant-edge-bound-general2`, :prf:ref:`thm-1-vertex-redundant-edge-bound-dim2`, :prf:ref:`thm-2-vertex-redundant-edge-bound-dim2` :prf:ref:`thm-k-vertex-redundant-edge-bound-dim2`, :prf:ref:`thm-3-vertex-redundant-edge-bound-dim3`, :prf:ref:`thm-k-vertex-redundant-edge-bound-dim3` ... are used Parameters ---------- k: level of redundancy dim: dimension combinatorial: determines whether a combinatinatorial algorithm shall be used in rigidity checking. Otherwise a probabilistic check is used that may give false results. See :meth:`~.Graph.is_rigid` for details. prob: bound on the probability for false negatives of the rigidity testing Warning: this is not the probability of wrong results in this method but is just passed on to rigidity testing Examples -------- >>> G = Graph([[0, 2], [0, 3], [0, 4], [1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]) >>> G.is_k_vertex_redundantly_rigid(1, 2) True >>> G.is_k_vertex_redundantly_rigid(2, 2) False >>> G = Graph([[0, 2], [0, 3], [0, 4], [1, 2], [1, 3], [1, 4], [2, 4], [3, 4]]) >>> G.is_k_vertex_redundantly_rigid(1, 2) False """ # noqa: E501 if not isinstance(dim, int) or dim < 1: raise TypeError( f"The dimension needs to be a positive integer, but is {dim}!" ) if not isinstance(k, int): raise TypeError(f"k needs to be a nonnegative integer, but is {k}!") if nx.number_of_selfloops(self) > 0: raise LoopError() n = self.number_of_nodes() m = self.number_of_edges() if n >= dim + k + 1 and self.min_degree() < dim + k: return False if dim == 1: return self.vertex_connectivity() >= k + 1 if ( dim == 2 and ( # edge bound from :prf:ref:`thm-1-vertex-redundant-edge-bound-dim2` (k == 1 and n >= 5 and m < 2 * n - 1) or # edge bound from :prf:ref:`thm-2-vertex-redundant-edge-bound-dim2` (k == 2 and n >= 6 and m < 2 * n + 2) or # edge bound from :prf:ref:`thm-k-vertex-redundant-edge-bound-dim2` (k >= 3 and n >= 6 * (k + 1) + 23 and m < ((k + 2) * n + 1) // 2) ) ) or ( dim == 3 and ( # edge bound from :prf:ref:`thm-3-vertex-redundant-edge-bound-dim3` (k == 3 and n >= 15 and m < 3 * n + 5) or # edge bound from :prf:ref:`thm-k-vertex-redundant-edge-bound-dim3` ( k >= 4 and n >= 12 * (k + 1) + 10 and n % 2 == 0 and m < ((k + 3) * n + 1) // 2 ) ) ): return False # edge bound from :prf:ref:`thm-k-vertex-redundant-edge-bound-general` if ( # n >= dim * dim + dim + k + 1 and m < dim * n - math.comb(dim + 1, 2) + k * dim + max(0, k - (dim + 1) // 2) ): return False # edge bound from :prf:ref:`thm-vertex-redundant-edge-bound-general2` if k >= dim + 1 and n >= dim + k + 1 and m < ((dim + k) * n + 1) // 2: return False # in all other cases check by definition G = deepcopy(self) for vertex_set in combinations(self.nodes, k): adj = [[v, list(G.neighbors(v))] for v in vertex_set] G.delete_vertices(vertex_set) if not G.is_rigid(dim, combinatorial, prob): return False # add vertices and edges back G.add_vertices(vertex_set) for v, neighbors in adj: for neighbor in neighbors: G.add_edge(v, neighbor) return True
[docs] @doc_category("Generic rigidity") def is_min_vertex_redundantly_rigid( self, dim: int = 2, combinatorial: bool = True, prob: float = 0.0001 ) -> bool: """ Check whether the graph is :prf:ref:`minimally vertex redundantly (generically) dim-rigid <def-min-redundantly-rigid-graph>`. See :meth:`.is_min_k_vertex_redundantly_rigid` (using k = 1) for details. """ if not isinstance(dim, int) or dim < 1: raise TypeError( f"The dimension needs to be a positive integer, but is {dim}!" ) return self.is_min_k_vertex_redundantly_rigid(1, dim, combinatorial, prob)
[docs] @doc_category("Generic rigidity") def is_min_k_vertex_redundantly_rigid( self, k: int, dim: int = 2, combinatorial: bool = True, prob: float = 0.0001 ) -> bool: """ Check whether the graph is :prf:ref:`minimally k-vertex redundantly (generically) dim-rigid <def-redundantly-rigid-graph>`. Preliminary checks from :prf:ref:`thm-minimal-k-vertex-redundant-upper-edge-bound`, :prf:ref:`thm-minimal-k-vertex-redundant-upper-edge-bound-dim1` are used. Parameters ---------- k: level of redundancy dim: dimension combinatorial: determines whether a combinatinatorial algorithm shall be used in rigidity checking. Otherwise a probabilistic check is used that may give false results. See :meth:`~.Graph.is_rigid` for details. prob: bound on the probability for false negatives of the rigidity testing Warning: this is not the probability of wrong results in this method but is just passed on to rigidity testing Examples -------- >>> G = Graph([[0, 3], [0, 4], [0, 5], [1, 3], [1, 4], [1, 5], [2, 3], [2, 4], [2, 5], [3, 4], [3, 5], [4, 5]]) >>> G.is_min_k_vertex_redundantly_rigid(1, 2) True >>> G.is_min_k_vertex_redundantly_rigid(2, 2) False >>> G = Graph([[0, 2], [0, 3], [0, 4], [0, 5], [1, 2], [1, 3], [1, 4], [1, 5], [2, 4], [2, 5], [3, 4], [3, 5]]) >>> G.is_k_vertex_redundantly_rigid(1, 2) True >>> G.is_min_k_vertex_redundantly_rigid(1, 2) False """ # noqa: E501 if not isinstance(dim, int) or dim < 1: raise TypeError( f"The dimension needs to be a positive integer, but is {dim}!" ) if not isinstance(k, int): raise TypeError(f"k needs to be a nonnegative integer, but is {k}!") if nx.number_of_selfloops(self) > 0: raise LoopError() n = self.number_of_nodes() m = self.number_of_edges() # edge bound from :prf:ref:`thm-minimal-k-vertex-redundant-upper-edge-bound` if m > (dim + k) * n - math.comb(dim + k + 1, 2): return False # edge bound from :prf:ref:`thm-minimal-k-vertex-redundant-upper-edge-bound-dim1` if dim == 1: if n >= 3 * (k + 1) - 1 and m > (k + 1) * n - (k + 1) * (k + 1): return False if not self.is_k_vertex_redundantly_rigid(k, dim, combinatorial, prob): return False # for the following we need to know that the graph is k-vertex-redundantly rigid if ( dim == 2 and ( # edge bound from :prf:ref:`thm-1-vertex-redundant-edge-bound-dim2` (k == 1 and n >= 5 and m == 2 * n - 1) or # edge bound from :prf:ref:`thm-2-vertex-redundant-edge-bound-dim2` (k == 2 and n >= 6 and m == 2 * n + 2) or # edge bound from :prf:ref:`thm-k-vertex-redundant-edge-bound-dim2` (k >= 3 and n >= 6 * (k + 1) + 23 and m == ((k + 2) * n + 1) // 2) ) ) or ( dim == 3 and ( # edge bound from :prf:ref:`thm-3-vertex-redundant-edge-bound-dim3` (k == 3 and n >= 15 and m == 3 * n + 5) or # edge bound from :prf:ref:`thm-k-vertex-redundant-edge-bound-dim3` ( k >= 4 and n >= 12 * (k + 1) + 10 and n % 2 == 0 and m == ((k + 3) * n + 1) // 2 ) ) ): return True # edge bound from :prf:ref:`thm-k-vertex-redundant-edge-bound-general` if ( # n >= dim * dim + dim + k + 1 and m == dim * n - math.comb(dim + 1, 2) + k * dim + max(0, k - (dim + 1) // 2) ): return True # edge bound from :prf:ref:`thm-vertex-redundant-edge-bound-general2` if k >= dim + 1 and n >= dim + k + 1 and m == ((dim + k) * n + 1) // 2: return True # in all other cases check by definition G = deepcopy(self) for edge in self.edge_list(): G.delete_edges([edge]) if G.is_k_vertex_redundantly_rigid(k, dim, combinatorial, prob): return False G.add_edges([edge]) return True
[docs] @doc_category("Generic rigidity") def is_redundantly_rigid( self, dim: int = 2, combinatorial: bool = True, prob: float = 0.0001 ) -> bool: """ Check whether the graph is :prf:ref:`redundantly (generically) dim-rigid <def-redundantly-rigid-graph>`. See :meth:`.is_k_redundantly_rigid` (using k = 1) for details. """ return self.is_k_redundantly_rigid(1, dim, combinatorial, prob)
[docs] @doc_category("Generic rigidity") def is_k_redundantly_rigid( self, k: int, dim: int = 2, combinatorial: bool = True, prob: float = 0.0001 ) -> bool: """ Check whether the graph is :prf:ref:`k-redundantly (generically) dim-rigid <def-redundantly-rigid-graph>`. Preliminary checks from :prf:ref:`thm-k-edge-redundant-edge-bound-dim2`, :prf:ref:`thm-2-edge-redundant-edge-bound-dim2`, :prf:ref:`thm-2-edge-redundant-edge-bound-dim3`, :prf:ref:`thm-k-edge-redundant-edge-bound-dim3`, :prf:ref:`thm-globally-redundant-3connected` and :prf:ref:`thm-globally-mindeg6-dim2`. are used Parameters ---------- k: level of redundancy dim: dimension combinatorial: determines whether a combinatinatorial algorithm shall be used in rigidity checking. Otherwise a probabilistic check is used that may give false results. See :meth:`~.Graph.is_rigid` for details. prob: bound on the probability for false negatives of the rigidity testing Warning: this is not the probability of wrong results in this method but is just passed on to rigidity testing Examples -------- >>> G = Graph([[0, 1], [0, 2], [0, 3], [0, 5], [1, 2], [1, 4], [2, 5], [3, 4], [3, 5], [4, 5]]) >>> G.is_k_redundantly_rigid(1, 2) True >>> G = Graph([[0, 3], [0, 4], [1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]) >>> G.is_k_redundantly_rigid(1, 2) False >>> G = Graph([[0, 1], [0, 2], [0, 3], [0, 4], [1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]) >>> G.is_k_redundantly_rigid(2, 2) True TODO ---- Improve with pebble games. """ # noqa: E501 if not isinstance(dim, int) or dim < 1: raise TypeError( f"The dimension needs to be a positive integer, but is {dim}!" ) if not isinstance(k, int): raise TypeError(f"k needs to be a nonnegative integer, but is {k}!") if nx.number_of_selfloops(self) > 0: raise LoopError() n = self.number_of_nodes() m = self.number_of_edges() if m < dim * n - math.comb(dim + 1, 2) + k: return False if self.min_degree() < dim + k: return False if dim == 1: return nx.edge_connectivity(self) >= k + 1 # edge bounds if ( dim == 2 and ( # basic edge bound (k == 1 and m < 2 * n - 2) or # edge bound from :prf:ref:`thm-2-edge-redundant-edge-bound-dim2` (k == 2 and n >= 5 and m < 2 * n) or # edge bound from :prf:ref:`thm-k-edge-redundant-edge-bound-dim2` (k >= 3 and n >= 6 * (k + 1) + 23 and m < ((k + 2) * n + 1) // 2) ) ) or ( dim == 3 and ( # edge bound from :prf:ref:`thm-2-edge-redundant-edge-bound-dim3` (k == 2 and n >= 14 and m < 3 * n - 4) or # edge bound from :prf:ref:`thm-k-edge-redundant-edge-bound-dim3` ( k >= 4 and n >= 12 * (k + 1) + 10 and n % 2 == 0 and m < ((k + 3) * n + 1) // 2 ) ) ): return False # use global rigidity property of :prf:ref:`thm-globally-redundant-3connected` # and :prf:ref:`thm-globally-mindeg6-dim2` if dim == 2 and k == 1 and self.vertex_connectivity() >= 6: return True # in all other cases check by definition G = deepcopy(self) for edge_set in combinations(self.edge_list(), k): G.delete_edges(edge_set) if not G.is_rigid(dim, combinatorial, prob): return False G.add_edges(edge_set) return True
[docs] @doc_category("Generic rigidity") def is_min_redundantly_rigid( self, dim: int = 2, combinatorial: bool = True, prob: float = 0.0001 ) -> bool: """ Check whether the graph is :prf:ref:`minimally redundantly (generically) dim-rigid <def-min-redundantly-rigid-graph>`. See :meth:`.is_min_k_redundantly_rigid` (using k = 1) for details. """ if not isinstance(dim, int) or dim < 1: raise TypeError( f"The dimension needs to be a positive integer, but is {dim}!" ) return self.is_min_k_redundantly_rigid(1, dim, combinatorial, prob)
[docs] @doc_category("Generic rigidity") def is_min_k_redundantly_rigid( self, k: int, dim: int = 2, combinatorial: bool = True, prob: float = 0.0001 ) -> bool: """ Check whether the graph is :prf:ref:`minimally k-redundantly (generically) dim-rigid <def-redundantly-rigid-graph>`. Preliminary checks from :prf:ref:`thm-minimal-1-edge-redundant-upper-edge-bound-dim2` are used. Parameters ---------- k: level of redundancy dim: dimension combinatorial: determines whether a combinatinatorial algorithm shall be used in rigidity checking. Otherwise a probabilistic check is used that may give false results. See :meth:`~.Graph.is_rigid` for details. prob: bound on the probability for false negatives of the rigidity testing Warning: this is not the probability of wrong results in this method but is just passed on to rigidity testing Examples -------- >>> G = Graph([[0, 2], [0, 3], [0, 4], [1, 2], [1, 3], [1, 4], [2, 4], [3, 4]]) >>> G.is_min_k_redundantly_rigid(1, 2) True >>> G.is_min_k_redundantly_rigid(2, 2) False >>> G = Graph([[0, 2], [0, 3], [0, 4], [1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]) >>> G.is_k_redundantly_rigid(1, 2) True >>> G.is_min_k_redundantly_rigid(1, 2) False """ # noqa: E501 if not isinstance(dim, int) or dim < 1: raise TypeError( f"The dimension needs to be a positive integer, but is {dim}!" ) if not isinstance(k, int): raise TypeError(f"k needs to be a nonnegative integer, but is {k}!") if nx.number_of_selfloops(self) > 0: raise LoopError() n = self.number_of_nodes() m = self.number_of_edges() # use bound from thm-minimal-1-edge-redundant-upper-edge-bound-dim2 if dim == 2: if k == 1: if n >= 7 and m > 3 * n - 9: return False if not self.is_k_redundantly_rigid(k, dim, combinatorial, prob): return False # for the following we need to know that the graph is k-redundantly rigid if ( dim == 2 and ( # basic edge bound (k == 1 and m == 2 * n - 2) or # edge bound from :prf:ref:`thm-2-edge-redundant-edge-bound-dim2` (k == 2 and n >= 5 and m == 2 * n) or # edge bound from :prf:ref:`thm-k-edge-redundant-edge-bound-dim2` (k >= 3 and n >= 6 * (k + 1) + 23 and m == ((k + 2) * n + 1) // 2) ) ) or ( dim == 3 and ( # edge bound from :prf:ref:`thm-2-edge-redundant-edge-bound-dim3` (k == 2 and n >= 14 and m == 3 * n - 4) or # edge bound from :prf:ref:`thm-k-edge-redundant-edge-bound-dim3` ( k >= 4 and n >= 12 * (k + 1) + 10 and n % 2 == 0 and m == ((k + 3) * n + 1) // 2 ) ) ): return True # in all other cases check by definition G = deepcopy(self) for edge in self.edge_list(): G.delete_edges([edge]) if G.is_k_redundantly_rigid(k, dim, combinatorial, prob): return False G.add_edges([edge]) return True
[docs] @doc_category("Generic rigidity") def is_rigid( self, dim: int = 2, combinatorial: bool = True, prob: float = 0.0001 ) -> bool: """ Check whether the graph is :prf:ref:`(generically) dim-rigid <def-gen-rigid>`. Parameters ---------- dim: dimension combinatorial: determines whether a combinatinatorial algorithm shall be used If combinatorial is true, a pebble game algorithm is used. Otherwise a probabilistic check is used that may give false negatives (see :prf:ref:`thm-probabilistic-rigidity-check`). prob: bound on the probability of a randomized algorithm to yield false negatives Examples -------- >>> G = Graph([(0,1), (1,2), (2,3), (3,0)]) >>> G.is_rigid() False >>> G.add_edge(0,2) >>> G.is_rigid() True TODO ---- Pebble game algorithm for d=2. Notes ----- * dim=1: Connectivity * dim=2: Pebble-game/(2,3)-rigidity * dim>=1: Rigidity Matrix if ``combinatorial==False`` By default, the graph is in dimension two and a combinatorial check is employed. """ if not isinstance(dim, int) or dim < 1: raise TypeError( f"The dimension needs to be a positive integer, but is {dim}!" ) if not isinstance(combinatorial, bool): raise TypeError( "combinatorial determines the method of rigidity-computation. " "It needs to be a Boolean." ) if nx.number_of_selfloops(self) > 0: raise LoopError() n = self.number_of_nodes() # edge count, compare :prf:ref:`thm-gen-rigidity-tight` if self.number_of_edges() < dim * n - math.comb(dim + 1, 2): return False # small graphs are rigid iff complete :pref:ref:`thm-gen-rigidity-small-complete` elif n <= dim + 1: return self.number_of_edges() == math.comb(n, 2) elif dim == 1 and combinatorial: return nx.is_connected(self) elif dim == 2 and combinatorial: deficiency = -(2 * n - 3) + self.number_of_edges() if deficiency < 0: return False else: self._build_pebble_digraph(2, 3) return self._pebble_digraph.number_of_edges() == 2 * n - 3 elif not combinatorial: N = int((n * dim - math.comb(dim + 1, 2)) / prob) if N < 1: raise ValueError("The parameter prob is too large.") from pyrigi.framework import Framework F = Framework.Random(self, dim, rand_range=[1, N]) return F.is_inf_rigid() else: raise ValueError( f"The Dimension for combinatorial computation must be either 1 or 2, " f"but is {dim}" )
[docs] @doc_category("Generic rigidity") def is_min_rigid( self, dim: int = 2, combinatorial: bool = True, use_precomputed_pebble_digraph: bool = False, prob: float = 0.0001, ) -> bool: """ Check whether the graph is :prf:ref:`minimally (generically) dim-rigid <def-min-rigid-graph>`. Parameters ---------- dim: dimension combinatorial: determines whether a combinatinatorial algorithm shall be used If combinatorial is true, a pebble game algorithm is used. Otherwise a probabilistic check is used that may give false negatives (see :prf:ref:`thm-probabilistic-rigidity-check`). use_precomputed_pebble_digraph: Only relevant if ``dim=2`` and ``combinatorial=True``. If ``True``, the pebble digraph present in the cache is used. If ``False``, recompute the pebble digraph. Use ``True`` only if you are certain that the pebble game digraph is consistent with the graph. prob: bound on the probability of a randomized algorithm to yield false negatives Examples -------- >>> G = Graph([(0,1), (1,2), (2,3), (3,0), (1,3)]) >>> G.is_min_rigid() True >>> G.add_edge(0,2) >>> G.is_min_rigid() False Notes ----- * dim=1: Tree * dim=2: Pebble-game/(2,3)-tight * dim>=1: Probabilistic Rigidity Matrix (maybe symbolic?) """ if not isinstance(dim, int) or dim < 1: raise TypeError( f"The dimension needs to be a positive integer, but is {dim}!" ) if not isinstance(combinatorial, bool): raise TypeError( "combinatorial determines the method of rigidity-computation. " "It needs to be a Boolean." ) if nx.number_of_selfloops(self) > 0: raise LoopError() n = self.number_of_nodes() # edge count, compare :prf:ref:`thm-gen-rigidity-tight` if self.number_of_edges() != dim * n - math.comb(dim + 1, 2): return False # small graphs are minimally rigid iff complete # :pref:ref:`thm-gen-rigidity-small-complete` elif n <= dim + 1: return self.number_of_edges() == math.comb(n, 2) elif dim == 1 and combinatorial: return nx.is_tree(self) elif dim == 2 and combinatorial: return self.is_tight( 2, 3, algorithm="pebble", use_precomputed_pebble_digraph=use_precomputed_pebble_digraph, ) elif not combinatorial: N = int((n * dim - math.comb(dim + 1, 2)) / prob) if N < 1: raise ValueError("The parameter prob is too large.") from pyrigi.framework import Framework F = Framework.Random(self, dim, rand_range=[1, N]) return F.is_min_inf_rigid() else: raise ValueError( f"The dimension for combinatorial computation must be either 1 or 2, " f"but is {dim}" )
[docs] @doc_category("Generic rigidity") def is_globally_rigid(self, dim: int = 2, prob: float = 0.0001) -> bool: """ Check whether the graph is :prf:ref:`globally dim-rigid <def-globally-rigid-graph>`. Parameters ---------- dim: dimension d for which we test whether the graph is globally $d$-rigid prob: probability of getting a wrong `False` answer Definitions ----- :prf:ref:`Globally d-rigid graph <def-globally-rigid-graph>` Examples -------- >>> G = Graph([(0,1), (1,2), (2,0)]) >>> G.is_globally_rigid() True >>> import pyrigi.graphDB as graphs >>> J = graphs.ThreePrism() >>> J.is_globally_rigid(dim=3) False >>> J.is_globally_rigid() False >>> K = graphs.Complete(6) >>> K.is_globally_rigid() True >>> K.is_globally_rigid(dim=3) True >>> C = graphs.CompleteMinusOne(5) >>> C.is_globally_rigid() True >>> C.is_globally_rigid(dim=3) False Notes ----- * dim=1: 2-connectivity * dim=2: :prf:ref:`Theorem globally 2-rigid graph <thm-globally-redundant-3connected>` * dim>=3: :prf:ref:`Theorem randomize algorithm <thm-globally-randomize-algorithm>` By default, the graph is in dimension 2. A complete graph is automatically globally rigid Since the deterministic algorithm is not very efficient, in the code we use a polynomial-time randomize algorithm, which will answer `False` all the time if the graph is not generically globally d-rigid, and it will give a wrong answer `False` with probability less than `prob`, which is 0.0001 by default. """ # noqa: E501 if not isinstance(dim, int) or dim < 1: raise TypeError( f"The dimension needs to be a positive integer, but is {dim}!" ) if nx.number_of_selfloops(self) > 0: raise LoopError() elif dim == 1: if (self.number_of_nodes() == 2 and self.number_of_edges() == 1) or ( self.number_of_nodes() == 1 or self.number_of_nodes() == 0 ): return True return self.vertex_connectivity() >= 2 elif dim == 2: if ( (self.number_of_nodes() == 3 and self.number_of_edges() == 3) or (self.number_of_nodes() == 2 and self.number_of_edges() == 1) or (self.number_of_nodes() == 1 or self.number_of_nodes() == 0) ): return True return self.is_redundantly_rigid() and self.vertex_connectivity() >= 3 else: v = self.number_of_nodes() e = self.number_of_edges() t = v * dim - math.comb(dim + 1, 2) # rank of the rigidity matrix N = int(1 / prob) * v * math.comb(v, 2) + 2 if v < dim + 2: return self.is_isomorphic(nx.complete_graph(v)) elif self.is_isomorphic(nx.complete_graph(v)): return True if e < t: return False # take a random framework with integer coordinates from pyrigi.framework import Framework F = Framework.Random(self, dim=dim, rand_range=[1, N]) w = F.stresses() if e == t: omega = zeros(F.rigidity_matrix().rows, 1) return F.stress_matrix(omega).rank() == v - dim - 1 elif w: omega = sum([randint(1, N) * u for u in w], w[0]) return F.stress_matrix(omega).rank() == v - dim - 1 else: raise ValueError( "There must be at least one stress but none was found." )
[docs] @doc_category("Partially implemented") def is_Rd_dependent( self, dim: int = 2, use_precomputed_pebble_digraph: bool = False ) -> bool: """ Notes ----- * dim=1: Graphic Matroid * dim=2: not (2,3)-sparse * dim>=1: Compute the rank of the rigidity matrix and compare with edge count use_precomputed_pebble_digraph: Only relevant if ``dim=2``. If ``True``, the pebble digraph present in the cache is used. If ``False``, recompute the pebble digraph. Use ``True`` only if you are certain that the pebble game digraph is consistent with the graph. TODO ----- Add unit tests """ return not self.is_Rd_independent( dim, use_precomputed_pebble_digraph=use_precomputed_pebble_digraph )
[docs] @doc_category("Partially implemented") def is_Rd_independent( self, dim: int = 2, use_precomputed_pebble_digraph: bool = False ) -> bool: """ Notes ----- * dim=1: Graphic Matroid * dim=2: (2,3)-sparse * dim>=1: Compute the rank of the rigidity matrix and compare with edge count use_precomputed_pebble_digraph: Only relevant if ``dim=2``. If ``True``, the pebble digraph present in the cache is used. If ``False``, recompute the pebble digraph. Use ``True`` only if you are certain that the pebble game digraph is consistent with the graph. TODO ----- Add unit tests """ if not isinstance(dim, int) or dim < 1: raise TypeError( f"The dimension needs to be a positive integer, but is {dim}!" ) if nx.number_of_selfloops(self) > 0: raise LoopError() if dim == 1: return len(self.cycle_basis()) == 0 if dim == 2: self.is_sparse( 2, 3, use_precomputed_pebble_digraph=use_precomputed_pebble_digraph ) raise NotImplementedError()
[docs] @doc_category("Partially implemented") def is_Rd_circuit( self, dim: int = 2, use_precomputed_pebble_digraph: bool = False ) -> bool: """ Notes ----- * dim=1: Graphic Matroid * dim=2: It is not sparse, but remove any edge and it becomes sparse Fundamental circuit is the whole graph * Not combinatorially: * dim>=1: Dependent + Remove every edge and compute the rigidity matrix' rank use_precomputed_pebble_digraph: Only relevant if ``dim=2``. If ``True``, the pebble digraph present in the cache is used. If ``False``, recompute the pebble digraph. Use ``True`` only if you are certain that the pebble game digraph is consistent with the graph. TODO ----- Add unit tests, make computation of ``remaining_edge`` more robust """ if not isinstance(dim, int) or dim < 1: raise TypeError( f"The dimension needs to be a positive integer, but is {dim}!" ) if nx.number_of_selfloops(self) > 0: raise LoopError() if dim == 1: if not nx.is_connected(self): return False # Check if every vertex has degree 2 for vertex in self.nodes(): if self.degree(vertex) != 2: return False return True if dim == 2: # get max sparse sugraph and check the fundamental circuit of # the one last edge if self.number_of_edges() != 2 * self.number_of_nodes() - 2: return False max_sparse_subgraph = self.spanning_sparse_subgraph( K=2, L=3, use_precomputed_pebble_digraph=use_precomputed_pebble_digraph ) if max_sparse_subgraph.number_of_edges() != 2 * self.number_of_nodes() - 3: return False remaining_edge = list(set(self.edges()) - set(max_sparse_subgraph.edges())) if len(remaining_edge) != 1: # this should not happen raise RuntimeError return ( len( self._pebble_digraph.fundamental_circuit( u=remaining_edge[0][0], v=remaining_edge[0][1], ) ) == self.number_of_nodes() ) raise NotImplementedError()
[docs] @doc_category("Waiting for implementation") def is_Rd_closed(self, dim: int = 2) -> bool: """ Notes ----- * dim=1: Graphic Matroid * dim=2: ?? * dim>=1: Adding any edge does not increase the rigidity matrix rank """ if not isinstance(dim, int) or dim < 1: raise TypeError( f"The dimension needs to be a positive integer, but is {dim}!" ) if nx.number_of_selfloops(self) > 0: raise LoopError() raise NotImplementedError()
[docs] @doc_category("Generic rigidity") def rigid_components(self, dim: int = 2) -> List[List[Vertex]]: """ List the vertex sets inducing vertex-maximal rigid subgraphs. Definitions ----- :prf:ref:`Rigid components <def-rigid-components>` Notes ----- If the graph itself is rigid, it is clearly maximal and is returned. Every edge is part of a rigid component. Isolated vertices form additional rigid components. Examples -------- >>> G = Graph([(0,1), (1,2), (2,3), (3,0)]) >>> G.rigid_components() [[0, 1], [0, 3], [1, 2], [2, 3]] >>> G = Graph([(0,1), (1,2), (2,3), (3,4), (4,5), (5,0), (0,2), (5,3)]) >>> G.is_rigid() False >>> G.rigid_components() [[0, 5], [2, 3], [0, 1, 2], [3, 4, 5]] """ if not isinstance(dim, int) or dim < 1: raise TypeError( f"The dimension needs to be a positive integer, but is {dim}!" ) if nx.number_of_selfloops(self) > 0: raise LoopError() if not nx.is_connected(self): res = [] for comp in nx.connected_components(self): res += self.subgraph(comp).rigid_components(dim) return res if self.is_rigid(dim, combinatorial=(dim < 3)): return [list(self)] rigid_subgraphs = { tuple(vertex_subset): True for r in range(2, self.number_of_nodes() - 1) for vertex_subset in combinations(self.nodes, r) if self.subgraph(vertex_subset).is_rigid(dim, combinatorial=(dim < 3)) } sorted_rigid_subgraphs = sorted( rigid_subgraphs.keys(), key=lambda t: len(t), reverse=True ) for i, H1 in enumerate(sorted_rigid_subgraphs): if rigid_subgraphs[H1] and i + 1 < len(sorted_rigid_subgraphs): for H2 in sorted_rigid_subgraphs[i + 1 :]: if set(H2).issubset(set(H1)): rigid_subgraphs[H2] = False return [list(H) for H, is_max in rigid_subgraphs.items() if is_max]
[docs] @doc_category("Generic rigidity") def max_rigid_dimension(self) -> int | Inf: """ Compute the maximum dimension, in which a graph is :prf:ref:`generically rigid <def-gen-rigid>`. Notes ----- This is done by taking the dimension predicted by the Maxwell count as a starting point and iteratively reducing the dimension until generic rigidity is found. This method returns `sympy.oo` (infinity) if and only if the graph is complete. It has the data type `Inf`. Examples -------- >>> import pyrigi.graphDB as graphs >>> G = graphs.Complete(3) >>> rigid_dim = G.max_rigid_dimension(); rigid_dim oo >>> rigid_dim.is_infinite True >>> import pyrigi.graphDB as graphs >>> G = graphs.Complete(4) >>> G.add_edges([(0,4),(1,4),(2,4)]) >>> G.max_rigid_dimension() 3 """ if nx.number_of_selfloops(self) > 0: raise LoopError() if not nx.is_connected(self): return 0 V = self.number_of_nodes() E = self.number_of_edges() # Only the complete graph is rigid in all dimensions if E == V * (V - 1) / 2: return oo # Find the largest d such that d*(d+1)/2 - d*V + E = 0 max_dim = int( math.floor(0.5 * (2 * V + math.sqrt((1 - 2 * V) ** 2 - 8 * E) - 1)) ) for d in range(max_dim, 0, -1): if self.is_rigid(d, combinatorial=False): return d
[docs] @doc_category("General graph theoretical properties") def is_isomorphic(self, graph: Graph) -> bool: """ Check whether two graphs are isomorphic. Notes ----- For further details, see :func:`networkx.algorithms.isomorphism.is_isomorphic`. Examples -------- >>> G = Graph([(0,1), (1,2)]) >>> G_ = Graph([('b','c'), ('c','a')]) >>> G.is_isomorphic(G_) True """ return nx.is_isomorphic(self, graph)
[docs] @doc_category("Other") def to_int(self, vertex_order: List[Vertex] = None) -> int: r""" Return the integer representation of the graph. The graph integer representation is the integer whose binary expansion is given by the sequence obtained by concatenation of the rows of the upper triangle of the adjacency matrix, excluding the diagonal. Parameters ---------- vertex_order: By listing vertices in the preferred order, the adjacency matrix is computed with the given order. If no vertex order is provided, :meth:`~.Graph.vertex_list()` is used. Examples -------- >>> G = Graph([(0,1), (1,2)]) >>> G.adjacency_matrix() Matrix([ [0, 1, 0], [1, 0, 1], [0, 1, 0]]) >>> G.to_int() 5 TODO ---- Implement taking canonical before computing the integer representation. Tests. """ if self.number_of_edges() == 0: raise ValueError( "The integer representation is only defined " "for graphs with at least one edge." ) if self.min_degree() == 0: raise ValueError( "The integer representation only works " "for graphs without isolated vertices." ) if nx.number_of_selfloops(self) == 0: M = self.adjacency_matrix(vertex_order) upper_diag = [ str(b) for i, row in enumerate(M.tolist()) for b in row[i + 1 :] ] return int("".join(upper_diag), 2) else: raise LoopError()
[docs] @classmethod @doc_category("Class methods") def from_int(cls, N: int) -> Graph: """ Return a graph given its integer representation. See :meth:`to_int` for the description of the integer representation. """ if not isinstance(N, int): raise TypeError(f"The parameter n has to be an integer, not {type(N)}.") if N <= 0: raise ValueError(f"The parameter n has to be positive, not {N}.") L = bin(N)[2:] n = math.ceil((1 + math.sqrt(1 + 8 * len(L))) / 2) rows = [] s = 0 L = "".join(["0" for _ in range(int(n * (n - 1) / 2) - len(L))]) + L for i in range(n): rows.append( [0 for _ in range(i + 1)] + [int(k) for k in L[s : s + (n - i - 1)]] ) s += n - i - 1 adjMatrix = Matrix(rows) return Graph.from_adjacency_matrix(adjMatrix + adjMatrix.transpose())
[docs] @classmethod @doc_category("Class methods") def from_adjacency_matrix(cls, M: Matrix) -> Graph: """ Create a graph from a given adjacency matrix. Examples -------- >>> M = Matrix([[0,1],[1,0]]) >>> G = Graph.from_adjacency_matrix(M) >>> print(G) Graph with vertices [0, 1] and edges [[0, 1]] """ if not M.is_square: raise TypeError("The matrix is not square!") if not M.is_symmetric(): raise TypeError("The matrix is not symmetric.") vertices = range(M.cols) edges = [] for i, j in combinations(vertices, 2): if not (M[i, j] == 0 or M[i, j] == 1): raise TypeError( "The provided adjacency matrix contains entries other than 0 and 1" ) if M[i, j] == 1: edges += [(i, j)] return Graph.from_vertices_and_edges(vertices, edges)
[docs] @doc_category("General graph theoretical properties") def adjacency_matrix(self, vertex_order: List[Vertex] = None) -> Matrix: """ Return the adjacency matrix of the graph. Parameters ---------- vertex_order: By listing vertices in the preferred order, the adjacency matrix can be computed in a way the user expects. If no vertex order is provided, :meth:`~.Graph.vertex_list()` is used. Examples -------- >>> G = Graph([(0,1), (1,2), (1,3)]) >>> G.adjacency_matrix() Matrix([ [0, 1, 0, 0], [1, 0, 1, 1], [0, 1, 0, 0], [0, 1, 0, 0]]) Notes ----- :func:`networkx.linalg.graphmatrix.adjacency_matrix` requires `scipy`. To avoid unnecessary imports, the method is implemented here. """ if vertex_order is None: vertex_order = self.vertex_list() else: if not set(self.nodes) == set( vertex_order ) or not self.number_of_nodes() == len(vertex_order): raise IndexError( "The vertex_order must contain the same vertices as the graph!" ) row_list = [ [+((v1, v2) in self.edges) for v2 in vertex_order] for v1 in vertex_order ] return Matrix(row_list)
[docs] @doc_category("Other") def random_framework(self, dim: int = 2, rand_range: Union(int, List[int]) = None): # the return type is intentionally omitted to avoid circular import """ Return framework with random realization. This method calls :meth:`.Framework.Random`. """ from pyrigi.framework import Framework return Framework.Random(self, dim, rand_range)
[docs] @doc_category("Other") def to_tikz( self, layout_type: str = "spring", placement: dict[Vertex, Point] = None, vertex_style: Union(str, dict[str : list[Vertex]]) = "gvertex", edge_style: Union(str, dict[str : list[Edge]]) = "edge", label_style: str = "labelsty", figure_opts: str = "", vertex_in_labels: bool = False, vertex_out_labels: bool = False, default_styles: bool = True, ) -> str: r""" Create a TikZ code for the graph. For using it in ``LaTeX`` you need to use the ``tikz`` package. Parameters ---------- placement: If ``placement`` is not specified, then it is generated depending on parameter ``layout``. layout: The possibilities are ``spring`` (default), ``circular``, ``random`` or ``planar``, see also :meth:`~Graph.layout`. vertex_style: If a single style is given as a string, then all vertices get this style. If a dictionary from styles to a list of vertices is given, vertices are put in style accordingly. The vertices missing in the dictionary do not get a style. edge_style: If a single style is given as a string, then all edges get this style. If a dictionary from styles to a list of edges is given, edges are put in style accordingly. The edges missing in the dictionary do not get a style. label_style: The style for labels that are placed next to vertices. figure_opts: Options for the tikzpicture environment. vertex_in_labels A bool on whether vertex names should be put as labels on the vertices. vertex_out_labels A bool on whether vertex names should be put next to vertices. default_styles A bool on whether default style definitions should be put to the options. Examples ---------- >>> G = Graph([(0,1), (1,2), (2,3), (0,3)]) >>> print(G.to_tikz()) # doctest: +SKIP \begin{tikzpicture}[gvertex/.style={fill=black,draw=white,circle,inner sep=0pt,minimum size=4pt},edge/.style={line width=1.5pt,black!60!white}] \node[gvertex] (0) at (-0.98794, -0.61705) {}; \node[gvertex] (1) at (0.62772, -1.0) {}; \node[gvertex] (2) at (0.98514, 0.62151) {}; \node[gvertex] (3) at (-0.62492, 0.99554) {}; \draw[edge] (0) to (1) (0) to (3) (1) to (2) (2) to (3); \end{tikzpicture} >>> print(G.to_tikz(layout_type = "circular")) # doctest: +NORMALIZE_WHITESPACE \begin{tikzpicture}[gvertex/.style={fill=black,draw=white,circle,inner sep=0pt,minimum size=4pt},edge/.style={line width=1.5pt,black!60!white}] \node[gvertex] (0) at (1.0, 0.0) {}; \node[gvertex] (1) at (-0.0, 1.0) {}; \node[gvertex] (2) at (-1.0, -0.0) {}; \node[gvertex] (3) at (0.0, -1.0) {}; \draw[edge] (0) to (1) (0) to (3) (1) to (2) (2) to (3); \end{tikzpicture} >>> print(G.to_tikz(placement = [[0, 0], [1, 1], [2, 2], [3, 3]])) # doctest: +NORMALIZE_WHITESPACE \begin{tikzpicture}[gvertex/.style={fill=black,draw=white,circle,inner sep=0pt,minimum size=4pt},edge/.style={line width=1.5pt,black!60!white}] \node[gvertex] (0) at (0, 0) {}; \node[gvertex] (1) at (1, 1) {}; \node[gvertex] (2) at (2, 2) {}; \node[gvertex] (3) at (3, 3) {}; \draw[edge] (0) to (1) (0) to (3) (1) to (2) (2) to (3); \end{tikzpicture} >>> print(G.to_tikz(layout_type = "circular", vertex_out_labels = True)) # doctest: +NORMALIZE_WHITESPACE \begin{tikzpicture}[gvertex/.style={fill=black,draw=white,circle,inner sep=0pt,minimum size=4pt},edge/.style={line width=1.5pt,black!60!white},labelsty/.style={font=\scriptsize,black!70!white}] \node[gvertex,label={[labelsty]right:$0$}] (0) at (1.0, 0.0) {}; \node[gvertex,label={[labelsty]right:$1$}] (1) at (-0.0, 1.0) {}; \node[gvertex,label={[labelsty]right:$2$}] (2) at (-1.0, -0.0) {}; \node[gvertex,label={[labelsty]right:$3$}] (3) at (0.0, -1.0) {}; \draw[edge] (0) to (1) (0) to (3) (1) to (2) (2) to (3); \end{tikzpicture} >>> print(G.to_tikz(layout_type = "circular", vertex_in_labels = True)) # doctest: +NORMALIZE_WHITESPACE \begin{tikzpicture}[gvertex/.style={white,fill=black,draw=black,circle,inner sep=1pt,font=\scriptsize},edge/.style={line width=1.5pt,black!60!white}] \node[gvertex] (0) at (1.0, 0.0) {$0$}; \node[gvertex] (1) at (-0.0, 1.0) {$1$}; \node[gvertex] (2) at (-1.0, -0.0) {$2$}; \node[gvertex] (3) at (0.0, -1.0) {$3$}; \draw[edge] (0) to (1) (0) to (3) (1) to (2) (2) to (3); \end{tikzpicture} >>> print(G.to_tikz(layout_type = "circular", vertex_style = "myvertex", edge_style = "myedge")) # doctest: +NORMALIZE_WHITESPACE \begin{tikzpicture}[] \node[myvertex] (0) at (1.0, 0.0) {}; \node[myvertex] (1) at (-0.0, 1.0) {}; \node[myvertex] (2) at (-1.0, -0.0) {}; \node[myvertex] (3) at (0.0, -1.0) {}; \draw[myedge] (0) to (1) (0) to (3) (1) to (2) (2) to (3); \end{tikzpicture} >>> print(G.to_tikz(layout_type = "circular", edge_style = {"red edge": [[1, 2]], "green edge": [[2, 3], [0, 1]]}, vertex_style = {"red vertex": [0], "blue vertex": [2, 3]})) # doctest: +NORMALIZE_WHITESPACE \begin{tikzpicture}[] \node[red vertex] (0) at (1.0, 0.0) {}; \node[blue vertex] (2) at (-1.0, -0.0) {}; \node[blue vertex] (3) at (0.0, -1.0) {}; \node[] (1) at (-0.0, 1.0) {}; \draw[red edge] (1) to (2); \draw[green edge] (2) to (3) (0) to (1); \draw[] (3) to (0); \end{tikzpicture} """ # noqa: E501 # strings for tikz styles if vertex_out_labels and default_styles: lstyle_str = r"labelsty/.style={font=\scriptsize,black!70!white}" else: lstyle_str = "" if vertex_style == "gvertex" and default_styles: if vertex_in_labels: vstyle_str = ( "gvertex/.style={white,fill=black,draw=black,circle," r"inner sep=1pt,font=\scriptsize}" ) else: vstyle_str = ( "gvertex/.style={fill=black,draw=white,circle,inner sep=0pt," "minimum size=4pt}" ) else: vstyle_str = "" if edge_style == "edge" and default_styles: estyle_str = "edge/.style={line width=1.5pt,black!60!white}" else: estyle_str = "" figure_str = [figure_opts, vstyle_str, estyle_str, lstyle_str] figure_str = [fs for fs in figure_str if fs != ""] figure_str = ",".join(figure_str) # tikz for edges edge_style_dict = {} if type(edge_style) is str: edge_style_dict[edge_style] = self.edge_list() else: dict_edges = [] for estyle, elist in edge_style.items(): cdict_edges = [ee for ee in elist if self.has_edge(*ee)] edge_style_dict[estyle] = cdict_edges dict_edges += cdict_edges remaining_edges = [ ee for ee in self.edge_list() if not ((ee in dict_edges) or (ee.reverse() in dict_edges)) ] edge_style_dict[""] = remaining_edges edges_str = "" for estyle, elist in edge_style_dict.items(): edges_str += ( f"\t\\draw[{estyle}] " + " ".join([" to ".join([f"({v})" for v in e]) for e in elist]) + ";\n" ) # tikz for vertices if placement is None: placement = self.layout(layout_type) vertex_style_dict = {} if type(vertex_style) is str: vertex_style_dict[vertex_style] = self.vertex_list() else: dict_vertices = [] for style, vlist in vertex_style.items(): cdict_vertices = [vv for vv in vlist if (vv in self.vertex_list())] vertex_style_dict[style] = cdict_vertices dict_vertices += cdict_vertices remaining_vertices = [ vv for vv in self.vertex_list() if not (vv in dict_vertices) ] vertex_style_dict[""] = remaining_vertices vertices_str = "" for vstyle, vlist in vertex_style_dict.items(): vertices_str += "".join( [ "\t\\node[" + vstyle + ( ("," if vertex_style != "" else "") + f"label={{[{label_style}]right:${v}$}}" if vertex_out_labels else "" ) + f"] ({v}) at " + f"({round(placement[v][0], 5)}, {round(placement[v][1], 5)}) {{" + (f"${v}$" if vertex_in_labels else "") + "};\n" for v in vlist ] ) return ( "\\begin{tikzpicture}[" + figure_str + "]\n" + vertices_str + edges_str + "\\end{tikzpicture}" )
def _resolve_edge_colors( self, edge_color: str | List[List[Edge]] | Dict[str : List[Edge]] ) -> tuple[List, List]: """ Return the lists of colors and edges in the format for plotting. """ edge_list = self.edge_list() edge_list_ref = [] edge_color_array = [] if isinstance(edge_color, str): return [edge_color for _ in edge_list], edge_list if isinstance(edge_color, list): edges_partition = edge_color colors = distinctipy.get_colors( len(edges_partition), colorblind_type="Deuteranomaly", pastel_factor=0.2 ) for i, part in enumerate(edges_partition): for e in part: if not self.has_edge(e[0], e[1]): raise ValueError( "The input includes a pair that is not an edge." ) edge_color_array.append(colors[i]) edge_list_ref.append(tuple(e)) elif isinstance(edge_color, dict): color_edges_dict = edge_color for color, edges in color_edges_dict.items(): for e in edges: if not self.has_edge(e[0], e[1]): raise ValueError( "The input includes an edge that is not part of the framework" ) edge_color_array.append(color) edge_list_ref.append(tuple(e)) else: raise ValueError("The input color_edge has none of the supported formats.") for e in edge_list: if (e[0], e[1]) not in edge_list_ref and (e[1], e[0]) not in edge_list_ref: edge_color_array.append("black") edge_list_ref.append(e) if len(edge_list_ref) > self.number_of_edges(): multiple_colored = [ e for e in edge_list_ref if (edge_list_ref.count(e) > 1 or (e[1], e[0]) in edge_list_ref) ] duplicates = [] for e in multiple_colored: if not (e in duplicates or (e[1], e[0]) in duplicates): duplicates.append(e) raise ValueError( f"The color of the edges in the following list" f"was specified multiple times: {duplicates}." ) return edge_color_array, edge_list_ref
[docs] @doc_category("Graph manipulation") def sum_t(self, G2: Graph, edge: Edge, t: int = 2): """ Return the t-sum of self and G2 along the given edge. Parameters ---------- G2: Graph edge: Edge t: integer, default value 2 Definitions ----- :prf:ref:`t-sum <def-t-sum>` Examples -------- >>> H = Graph([[1,2],[2,3],[3,1],[3,4]]) >>> G = Graph([[0,1],[1,2],[2,3],[3,1]]) >>> H.sum_t(G, [1, 2], 3) Graph with vertices [0, 1, 2, 3, 4] and edges [[0, 1], [1, 3], [2, 3], [3, 4]] """ if edge not in self.edges or edge not in G2.edges: raise ValueError( f"The edge {edge} is not in the intersection of the graphs." ) # check if the intersection is a t-complete graph if not self.intersection(G2).is_isomorphic(nx.complete_graph(t)): raise ValueError( f"The intersection of the graphs must be a {t}-complete graph." ) G = self + G2 G.remove_edge(edge[0], edge[1]) return G
[docs] @doc_category("Graph manipulation") def intersection(self, G2: Graph): """ Return the intersection of self and G2. Parameters ---------- G2: Graph Examples -------- >>> H = Graph([[1,2],[2,3],[3,1],[3,4]]) >>> G = Graph([[0,1],[1,2],[2,3],[3,1]]) >>> G.intersection(H) Graph with vertices [1, 2, 3] and edges [[1, 2], [1, 3], [2, 3]] >>> G = Graph([[0,1],[0,2],[1,2]]) >>> G.add_vertex(3) >>> H = Graph([[0,1],[1,2],[2,4],[4,0]]) >>> H.add_vertex(3) >>> G.intersection(H) Graph with vertices [0, 1, 2, 3] and edges [[0, 1], [1, 2]] """ return Graph.from_vertices_and_edges( [v for v in self.nodes if v in G2.nodes], [e for e in self.edges if e in G2.edges], )
[docs] @doc_category("Other") def layout(self, layout_type: str = "spring") -> Dict[Vertex, Point]: """ Generate a placement of the vertices. This method a is wrapper for the functions :func:`~networkx.drawing.layout.spring_layout`, :func:`~networkx.drawing.layout.random_layout`, :func:`~networkx.drawing.layout.circular_layout` and :func:`~networkx.drawing.layout.planar_layout` Parameters ---------- layout_type: The supported layouts are ``circular``, ``planar``, ``random`` and ``spring`` (default). """ if layout_type == "circular": return nx.drawing.layout.circular_layout(self) elif layout_type == "planar": return nx.drawing.layout.planar_layout(self) elif layout_type == "random": return nx.drawing.layout.random_layout(self) elif layout_type == "spring": return nx.drawing.layout.spring_layout(self) else: raise ValueError(f"layout_type {layout_type} is not supported.")
[docs] @doc_category("Other") def plot( self, placement: Dict[Vertex, Point] = None, inf_flex: Dict[Vertex, Sequence[Coordinate]] = None, layout: str = "spring", vertex_size: int = 300, vertex_color: str = "#4169E1", vertex_shape: str = "o", vertex_labels: bool = True, edge_width: float = 2.5, edge_color: str | List[List[Edge]] | Dict[str : List[Edge]] = "black", edge_style: str = "solid", flex_width: float = 2.5, flex_length: float = 0.15, flex_color: str | List[List[Edge]] | Dict[str : List[Edge]] = "limegreen", flex_style: str = "solid", flex_arrowsize: int = 20, font_color: str = "whitesmoke", canvas_width: float = 6.4, canvas_height: float = 4.8, aspect_ratio: float = 1.0, **kwargs, ) -> None: """ Plot the graph. See tutorial Plotting for illustration of the options. Parameters ---------- placement: If ``placement`` is not specified, then it is generated depending on parameter ``layout``. inf_flex: It is possible to plot an infinitesimal flex alongside the realization of your graph. It is specified as a ``Dict`` of flexes. layout: The possibilities are ``spring`` (default), ``circular``, ``random`` or ``planar``, see also :meth:`~Graph.layout`. vertex_size: The size of the vertices. vertex_color: The color of the vertices. The color can be a string or an rgb (or rgba) tuple of floats from 0-1. vertex_shape: The shape of the vertices specified as as matplotlib.scatter marker, one of ``so^>v<dph8``. vertex_labels: If ``True`` (default), vertex labels are displayed. edge_width: edge_color: If a single color is given as a string or rgb (or rgba) tuple of floats from 0-1, then all edges get this color. If a (possibly incomplete) partition of the edges is given, then each part gets a different color. If a dictionary from colors to a list of edge is given, edges are colored accordingly. The edges missing in the partition/dictionary, are colored black. edge_style: Edge line style: ``-``/``solid``, ``--``/``dashed``, ``-.``/``dashdot`` or ``:``/``dotted``. By default '-'. flex_width: The width of the infinitesimal flex's arrow tail. flex_color: The color of the infinitesimal flex is by default 'limegreen'. flex_style: Line Style: ``-``/``solid``, ``--``/``dashed``, ``-.``/``dashdot`` or ``:``/``dotted``. By default '-'. flex_length: Length of the displayed flex relative to the total canvas diagonal in percent. By default 15%. flex_arrowsize: Size of the arrowhead's length and width. font_size: The size of the font used for the labels. font_color: The color of the font used for the labels. canvas_width: The width of the canvas in inches. canvas_height: The height of the canvas in inches. aspect_ratio: The ratio of y-unit to x-unit. By default 1.0. """ fig, ax = plt.subplots() ax.set_adjustable("datalim") fig.set_figwidth(canvas_width) fig.set_figheight(canvas_height) ax.set_aspect(aspect_ratio) edge_color_array, edge_list_ref = self._resolve_edge_colors(edge_color) if placement is None: placement = self.layout(layout) nx.draw( self, pos=placement, ax=ax, node_size=vertex_size, node_color=vertex_color, node_shape=vertex_shape, with_labels=vertex_labels, width=edge_width, edge_color=edge_color_array, font_color=font_color, edgelist=edge_list_ref, style=edge_style, **kwargs, ) if inf_flex is not None: magnidutes = [] for flex_key in inf_flex.keys(): if flex_key not in self.vertex_list(): raise KeyError( "A key in inf_flex does not exist as a vertex in the graph!" ) if len(inf_flex[flex_key]) != 2: raise ValueError( "The infinitesimal flex needs to be in dimension 2." ) magnidutes.append( math.sqrt(sum(flex**2 for flex in inf_flex[flex_key])) ) # normalize the edge lengths by the Euclidean norm of the longest one flex_mag = max(magnidutes) for flex_key in inf_flex.keys(): if not all(entry == 0 for entry in inf_flex[flex_key]): inf_flex[flex_key] = tuple( flex / flex_mag for flex in inf_flex[flex_key] ) # Delete the edges with zero length inf_flex = { flex_key: np.array(inf_flex[flex_key], dtype=float) for flex_key in inf_flex.keys() if not all(entry == 0 for entry in inf_flex[flex_key]) } x_canvas_width = ax.get_xlim()[1] - ax.get_xlim()[0] y_canvas_width = ax.get_ylim()[1] - ax.get_ylim()[0] arrow_length = ( math.sqrt(x_canvas_width**2 + y_canvas_width**2) * flex_length ) H = nx.DiGraph([(v, str(v) + "_flex") for v in inf_flex.keys()]) H_placement = { str(v) + "_flex": np.array( [ placement[v][0] + arrow_length * inf_flex[v][0], placement[v][1] + arrow_length * inf_flex[v][1], ], dtype=float, ) for v in inf_flex.keys() } H_placement.update( {v: np.array(placement[v], dtype=float) for v in inf_flex.keys()} ) nx.draw( H, pos=H_placement, ax=ax, arrows=True, arrowsize=flex_arrowsize, node_size=0, node_color="white", width=flex_width, edge_color=flex_color, style=flex_style, **kwargs, ) plt.show()
Graph.__doc__ = Graph.__doc__.replace( "METHODS", generate_category_tables( Graph, 1, [ "Attribute getters", "Class methods", "Graph manipulation", "General graph theoretical properties", "Generic rigidity", "Sparseness", "Other", "Waiting for implementation", ], include_all=False, ), )