"""This is a module for providing common types of graphs."""importnetworkxasnximportpyrigi._input_checkas_input_checkfrompyrigi.graphimportGraphfrompyrigi.data_typeimportVertex,Sequencefromitertoolsimportcombinations
[docs]defCycle(n:int)->Graph:"""Return the cycle graph on ``n`` vertices."""returnGraph(nx.cycle_graph(n))
[docs]defComplete(n:int=None,vertices:Sequence[Vertex]=None)->Graph:""" Return the complete graph on ``n`` vertices. The vertex labels can also be specified explicitly via the keyword ``vertices``. Parameters ---------- n: The number of vertices. vertices: An optional parameter for the vertices. Examples -------- >>> print(Complete(5)) Graph with vertices [0, 1, 2, 3, 4] and edges [[0, 1], [0, 2], [0, 3], [0, 4], [1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]] >>> print(Complete(5, [0, 1, 2, 3, 4])) Graph with vertices [0, 1, 2, 3, 4] and edges [[0, 1], [0, 2], [0, 3], [0, 4], [1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]] >>> print(Complete(vertices=['a', 'b', 'c', 'd'])) Graph with vertices ['a', 'b', 'c', 'd'] and edges [['a', 'b'], ['a', 'c'], ['a', 'd'], ['b', 'c'], ['b', 'd'], ['c', 'd']] """# noqa: E501ifverticesisNone:_input_check.integrality_and_range(n,"number of vertices n",min_val=0)returnGraph(nx.complete_graph(n))ifnisNone:n=len(vertices)_input_check.equal(len(vertices),n,"number of `vertices`","the parameter `n`")edges=list(combinations(vertices,2))returnGraph.from_vertices_and_edges(vertices,edges)
[docs]defPath(n:int)->Graph:"""Return the path graph with ``n`` vertices."""_input_check.integrality_and_range(n,"number of vertices n",min_val=0)returnGraph(nx.path_graph(n))
[docs]defCompleteBipartite(n1:int,n2:int)->Graph:"""Return the complete bipartite graph on ``n1+n2`` vertices."""_input_check.integrality_and_range(n1,"number of vertices n1",min_val=1)_input_check.integrality_and_range(n2,"number of vertices n2",min_val=1)returnGraph(nx.complete_multipartite_graph(n1,n2))
[docs]defK33plusEdge()->Graph:"""Return the complete bipartite graph on 3+3 vertices with an extra edge."""G=CompleteBipartite(3,3)G.add_edge(0,1)returnG
[docs]defDiamond()->Graph:"""Return the complete graph on 4 vertices minus an edge."""returnGraph([(0,1),(1,2),(2,3),(3,0),(0,2)])
[docs]defThreePrism()->Graph:"""Return the 3-prism graph."""returnGraph([(0,1),(1,2),(0,2),(3,4),(4,5),(3,5),(0,3),(1,4),(2,5)])
[docs]defThreePrismPlusEdge()->Graph:"""Return the 3-prism graph with one extra edge."""returnGraph([(0,1),(1,2),(0,2),(3,4),(4,5),(3,5),(0,3),(1,4),(2,5),(0,5)])
[docs]defCubeWithDiagonal()->Graph:"""Return the graph given by the skeleton of the cube with a main diagonal."""returnGraph([(0,1),(1,2),(2,3),(0,3)]+[(4,5),(5,6),(6,7),(4,7)]+[(0,4),(1,5),(2,6),(3,7)]+[(0,6)])
[docs]defCompleteMinusOne(n:int)->Graph:"""Return the complete graph on ``n`` vertices minus one edge."""G=Complete(n)G.delete_edge((0,1))returnG
[docs]defOctahedral()->Graph:"""Return the graph given by the skeleton of an octahedron."""returnGraph([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),])
[docs]defIcosahedral()->Graph:"""Return the graph given by the skeleton of an icosahedron."""returnGraph(nx.icosahedral_graph().edges)
[docs]defDodecahedral()->Graph:"""Return the graph given by the skeleton of a dodecahedron."""returnGraph([(0,8),(0,12),(0,16),(1,8),(1,13),(1,18),(2,10),(2,12),(2,17),(3,9),(3,14),(3,16),(4,10),(4,13),(4,19),(5,9),(5,15),(5,18),(6,11),(6,14),(6,17),(7,11),(7,15),(7,19),(8,9),(10,11),(12,13),(14,15),(16,17),(18,19),])
[docs]defK66MinusPerfectMatching()->Graph:""" Return the complete bipartite graph minus a perfect matching. A matching is formed by six non-incident edges. """G=CompleteBipartite(6,6)G.delete_edges([(i,i+6)foriinrange(0,6)])returnG
[docs]defCnSymmetricFourRegular(n:int=8)->Graph:""" Return a $C_n$-symmetric 4-regular graph. The value ``n`` must be even and at least 8. Definitions ----------- * :prf:ref:`Example with a free group action <def-Cn-symmetric>` """_input_check.integrality_and_range(n,"number of vertices n",min_val=8)ifnotn%2==0:raiseValueError("To generate this graph, the cyclic group "+"must have an even order!")G=Graph()G.add_edges([(0,n-1),(n-3,0),(n-2,1),(n-1,2)])foriinrange(1,n):G.add_edges([(i,i-1)])foriinrange(n-3):G.add_edge(i,i+3)returnG
[docs]defCnSymmetricWithFixedVertex(n:int=8)->Graph:""" Return a $C_n$-symmetric graph with a fixed vertex. The value ``n`` must be even and at least 8. The returned graph satisfies the expected symmetry-adapted Laman count for rotation but is (generically) infinitesimally flexible. Definitions ----------- :prf:ref:`Example with joint at origin <def-Cn-symmetric-joint-at-origin>` """_input_check.integrality_and_range(n,"order of cyclic group n",min_val=8)ifnotn%2==0:raiseValueError("To generate this graph, the cyclic group "+"must have an even order!")G=CnSymmetricFourRegular(n)G.add_edges([(0,n),(n,2*n),(n+1,2*n-1),(n,2*n-2)])foriinrange(1,n):G.add_edges([(i,i+n),(2*n,i+n),((i+1)+n,(i+1)+n-2)])returnG
[docs]defThreeConnectedR3Circuit()->Graph:""" Return a 3-connected $R_3$-circuit. The returned graph is hypothesized to be the smallest 3-connected $R_3$-circuit. """returnGraph([(0,1),(0,2),(0,3),(0,5),(0,6),(0,8),(0,9),(0,11),(0,12),(1,2),(1,3),(1,4),(1,10),(1,11),(1,12),(2,3),(2,4),(3,4),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10),(10,11),(10,12),(11,12),])
[docs]defWheel(n:int)->Graph:""" Create the wheel graph on ``n+1`` vertices. """_input_check.integrality_and_range(n+1,"number of vertices n+1",min_val=4)G=Cycle(n)G.add_edges([(i,n)foriinrange(n)])returnG