Source code for pyrigi.graphDB

"""
This is a module for providing common types of graphs.
"""

import networkx as nx
from pyrigi.graph import Graph


[docs] def Cycle(n: int) -> Graph: """Return the cycle graph on n vertices.""" return Graph(nx.cycle_graph(n))
[docs] def Complete(n: int) -> Graph: """Return the complete graph on n vertices.""" return Graph(nx.complete_graph(n))
[docs] def Path(n: int) -> Graph: """Return the path graph with n vertices.""" return Graph(nx.path_graph(n))
[docs] def CompleteBipartite(m: int, n: int) -> Graph: """Return the complete bipartite graph on m+n vertices.""" return Graph(nx.complete_multipartite_graph(m, n))
[docs] def K33plusEdge() -> Graph: """Return the complete bipartite graph on 3+3 vertices with an extra edge.""" G = CompleteBipartite(3, 3) G.add_edge(0, 1) return G
[docs] def Diamond() -> Graph: """Return the complete graph on 4 vertices minus an edge.""" return Graph([(0, 1), (1, 2), (2, 3), (3, 0), (0, 2)])
[docs] def ThreePrism() -> Graph: """Return the 3-prism graph.""" return Graph( [(0, 1), (1, 2), (0, 2), (3, 4), (4, 5), (3, 5), (0, 3), (1, 4), (2, 5)] )
[docs] def ThreePrismPlusEdge() -> Graph: """Return the 3-prism graph with one extra edge.""" return Graph( [(0, 1), (1, 2), (0, 2), (3, 4), (4, 5), (3, 5), (0, 3), (1, 4), (2, 5), (0, 5)] )
[docs] def CubeWithDiagonal() -> Graph: """Return the graph given by the skeleton of the cube with a main diagonal.""" return Graph( [(0, 1), (1, 2), (2, 3), (0, 3)] + [(4, 5), (5, 6), (6, 7), (4, 7)] + [(0, 4), (1, 5), (2, 6), (3, 7)] + [(0, 6)] )
[docs] def DoubleBanana(d: int = 3, t: int = 2) -> Graph: r""" Return the d-dimensional double banana graph. Parameters ---------- d: integer, must be at least 3 t: integer, must be 2 <= t <= d-1 Definitions ----- :prf:ref:`Generalized Double Banana <def-generalized-double-banana>` Examples -------- >>> DoubleBanana() Graph with vertices [0, 1, 2, 3, 4, 5, 6, 7] and edges [[0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [2, 3], [2, 4], [3, 4], [5, 6], [5, 7], [6, 7]] >>> DoubleBanana(d = 4) Graph with vertices [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] and edges [[0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [2, 3], [2, 4], [2, 5], [3, 4], [3, 5], [4, 5], [6, 7], [6, 8], [6, 9], [7, 8], [7, 9], [8, 9]] """ # noqa: E501 if d < 3: raise ValueError(f"The parameter d must be at least 3, instead it is {d}.") if t < 2 or t > d - 1: raise ValueError(f"The parameter t must be 2 <= t <= {d-1}, instead it is {t}.") r = (d + 2) - t K = Complete(t) K1 = K.copy() for i in range(t, d + 2): K1.add_edges([[i, v] for v in K1.nodes]) K2 = K.copy() for i in range(d + 2, d + 2 + r): K2.add_edges([[i, v] for v in K2.nodes]) return K1.sum_t(K2, [0, 1], t)
[docs] def CompleteMinusOne(n: int) -> Graph: """Return the complete graph on n vertices minus one edge.""" G = Complete(n) G.delete_edge((0, 1)) return G
[docs] def Octahedral() -> Graph: """Return the graph given by the skeleton of an octahedron.""" return Graph( [ (0, 2), (0, 3), (0, 4), (0, 5), (1, 2), (1, 3), (1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5), ] )
[docs] def Frustum(n: int) -> Graph: """Return the :prf:ref:`n-Frustum graph <def-n-frustum>`""" return Graph( [(j, (j + 1) % n) for j in range(0, n)] + [(j, (j + 1 - n) % n + n) for j in range(n, 2 * n)] + [(j, j + n) for j in range(0, n)] )
[docs] def K66MinusPerfectMatching(): """ Return a complete bipartite graph minus a perfect matching. A matching is formed by six non-incident edges. TODO ---- use in tests """ G = CompleteBipartite(6, 6) G.delete_edges([(i, i + 6) for i in range(0, 6)]) return G
[docs] def CnSymmetricFourRegular(n: int = 8) -> Graph: """ Return a C_n-symmetric graph. TODO ---- use in tests Definitions ----------- * :prf:ref:`Example with a free group action <def-Cn-symmetric>` """ if not n % 2 == 0 or n < 8: raise ValueError( "To generate this graph, the cyclical group " + "needs to have an even order of at least 8!" ) G = Graph() G.add_edges([(0, n - 1), (n - 3, 0), (n - 2, 1), (n - 1, 2)]) for i in range(1, n): G.add_edges([(i, i - 1)]) for i in range(n - 3): G.add_edge(i, i + 3) return G
[docs] def CnSymmetricFourRegularWithFixedVertex(n: int = 8) -> Graph: """ Return a C_n-symmetric graph with a fixed vertex. The cyclical group C_n needs to have even order of at least 8. The returned graph satisfies the expected symmetry-adapted Laman count for rotation but is infinitesimally flexible. TODO ---- use in tests Definitions ----------- * :prf:ref:`Example with joint at origin <def-Cn-symmetric-joint-at-origin>` """ if not n % 2 == 0 or n < 8: raise ValueError( "To generate this graph, the cyclical group " + "needs to have an even order of at least 8!" ) G = CnSymmetricFourRegular(n) G.add_edges([(0, n), (n, 2 * n), (n + 1, 2 * n - 1), (n, 2 * n - 2)]) for i in range(1, n): G.add_edges([(i, i + n), (2 * n, i + n), ((i + 1) + n, (i + 1) + n - 2)]) return G
[docs] def ThreeConnectedR3Circuit(): """ Return a 3-connected R_3-circuit. The returned graph is hypothesized to be the smallest 3-connected R_3-circuit. TODO ---- use in tests """ return Graph( [ (0, 1), (0, 2), (0, 3), (0, 5), (0, 6), (0, 8), (0, 9), (0, 11), (0, 12), (1, 2), (1, 3), (1, 4), (1, 10), (1, 11), (1, 12), (2, 3), (2, 4), (3, 4), (4, 5), (4, 6), (4, 7), (5, 6), (5, 7), (6, 7), (7, 8), (7, 9), (7, 10), (8, 9), (8, 10), (9, 10), (10, 11), (10, 12), (11, 12), ] )